26. Remarks on the Uniqueness in an Inverse Problem for the Heat Equation. I

By Takashi SUZUK

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1982)

§ 1. Introduction. For $(p, h, H, a) \in C^1[0, 1] \times \mathbb{R} \times \mathbb{R} \times L^2(0, 1)$, let $(E_{p,h,H,a})$ denote the heat equation

$$
(1.1) \qquad \qquad \frac{\partial u}{\partial t} + \left(p(x) - \frac{\partial^2}{\partial x^2}\right)u = 0 \qquad (0 < t < \infty, 0 < x < 1)
$$

with the boundary condition

(1.1)
$$
\frac{\partial u}{\partial t} + \left(p(x) - \frac{\partial^2}{\partial x^2}\right)u = 0 \qquad (0 < t < \infty, 0 < x < 1)
$$

with the boundary condition
(1.2)
$$
\frac{\partial u}{\partial x} - h u_{|x=0} = 0, \quad \frac{\partial u}{\partial x} + H u_{|x=1} = 0 \quad (0 < t < \infty)
$$

and with the initial condition

(1.3) $u_{t=0} = a(x)$ $(0 < x < 1)$. Let $A_{p,h,H}$ be the realization in $L^2(0, 1)$ of the differential operator $p(x)$ $-(\partial^2/\partial x^2)$ with the boundary condition (1.2), and let $\{\lambda_n | n=0, 1, \cdots\}$ and ${\phi(\cdot, \lambda_n)|n=0, 1, \cdots}$ be the eigenvalues and the eigenfunctions of $A_{n,k,H}$, respectively, the latter being normalized by $\phi(0,\lambda_n)=1$ (n=0, 1, ...). Noting that each λ_n (n=0, 1, ...) is simple, we call

$$
N=\sharp{\lambda_n\,|\,(a,\phi(\,\cdot\,,\lambda_n))=0\}
$$

the "degenerate number" of $a \in L^2(0,1)$ with respect to $A_{p,h,H}$, where $($, $)$ means the L^2 -inner product.

Let T_1 , T_2 in $0 \leq T_1 < T_2 < \infty$ be given. For the solution $u=u(t, x)$ of the equation $(E_{p,h,H,a})$, the following theorem was proved by Murayama $[1]$ and Suzuki $[4]$, differently:

Theorem 0. The equality (1.4') $v(t,\xi) = u(t,\xi)$ $(T_1 \le t \le T_2; \xi = 0, 1)$ implies (1.5) $(q, j, J, b) = (p, h, H, a)$ if and only if $N=0$, where $v=v(t, x)$ is the solution of $(E_{q,i,j,b})$ $((q, j, J, b) \in C^{1}[0, 1] \times \mathcal{R} \times \mathcal{R} \times L^{2}(0, 1)).$ In the present paper, for $x_0 \in (0, 1]$, we consider (1.4) $v_x(t, x_0) = u_x(t, x_0), \quad v(t, \xi) = u(t, \xi) \quad (T_1 \leq t \leq T_2; \xi = 0, x_0)$ instead of $(1.4')$, and study **Problem.** Under what condition on (p, h, H, a) , does (1.4) imply (1.5) ? Namely, we show when

(1.6)

(1.6) $\mathcal{M} = \{(p, h, H, a)\}$
is satisfied, where $\hat{\mathcal{M}} = \{(q, j, J, b) | C^1[0, 1] \times \mathcal{R} \times \mathcal{R} \times L^2(0, 1)|$ (1.4) holds