22. A Characterization of the Intersection Form of a Milnor's Fiber for a Function with an Isolated Critical Point

By Kyoji SAITO

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 12, 1982)

§1. Introduction and the statements of the main results. Let $f: C^{n+1}, 0 \rightarrow C, 0$ be a germ of a holomorphic function at $0 \in C^{n+1}$ with an isolated critical point. Due to Milnor [2], for r and ε sufficiently small with $0 < \varepsilon \ll r \ll 1$, the restriction

 $f: \{x \in C^{n+1}: |x| < r\} \cap \{|f| = \varepsilon\} \longrightarrow \{t \in C: |t| = \varepsilon\}$

of f defines a fibration whose general fiber F is a bouquet of n-spheres so that the middle homology group $H_n(F, Z)$ is nonvanishing.

Using Poincaré duality $H_n(F, Z) \simeq H^n(F, \partial F, Z)$, one gets an intersection form $\langle , \rangle : H_n(F, Z) \times H_n(F, Z) \to Z$, which is symmetric or skew-symmetric according as n is even or odd.

For a computation of the intersection form, we used in [3] the following fact.

Theorem 1. A complex valued bilinear form B on $H_n(F, Z) \otimes C$ is a constant multiple of the intersection form if B is invariant under the total monodromy group action on $H_n(F, Z)$, except for the case when f at 0 is nondegenerate (i.e. ordinary double point) and n is odd. Here the total monodromy group is by definition the image of the fundamental group of the complement of the discriminant loci of a universal unfolding of f.

Since this fact seems still not generally well-known, we publish it here with a proof separately from [3]. In §2 we give a somewhat abstract lemma characterizing invariant bilinear forms.

§ 2. The uniqueness lemma for an invariant bilinear form. Let V be a vector space over a field k with ch $k \neq 2$ and let $\langle , \rangle : V \times V \rightarrow k$ be a k-bilinear form which is either symmetric or skew-symmetric.

Let A be a subset of V. In case \langle , \rangle is symmetric, we assume $\langle e, e \rangle = 2$ for all $e \in A$. Let us associate the graph $\Gamma(A)$ to such A as follows. The set of vertices of $\Gamma(A)$ is in a one-to-one correspondence to A so that we identify them. Two vertices e and e' of A are connected by a 1-simplex if and only if $\langle e, e' \rangle \neq 0$.

Let W(A) be the subgroup of GL(V) generated by the set of reflexions σ_e for $e \in A$, where

 $\sigma_e(u) := u - \langle u, e \rangle e \qquad \text{for } u \in V.$