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1o Introduction and the statements of the main results. Let
f: C+x, 0C, 0 be a germ of holomorphie unction at 0 e C+ with
an isolated critical point. Due to Milnor [2], for r and e sufficiently
small with 0e<<r << 1, the restriction

f: {x e C"+’ ix]<r} n {Ifl=} >{t e C: Itl-}
of f defines a fibration whose general fiber F is a bouquet of n-spheres
so that the middle homology group H,(F, Z) is nonvanishing.

Using Poincar6 duality H,(F, Z)_H"(F, F, Z), one gets an inter-
section form <, > H,(F, Z) H,(F, Z)-.Z, which is symmetric or skew-
symmetric according as n is even or odd.

For a computation of the intersection form, we used in [3] the
following fact.

Theorem 1. A complex valued bilinear form B on H,(F, Z)(R)C
is a constant multiple of the intersection form if B is invariant under
the total monodromy group action on H,(F,Z), except for the case
when f at 0 is nondegenerate (i.e. ordinary double point) and n is odd.
Here the total monodromy group is by definition the image of the
fundamental group of the complement of the discriminant loci of a
universal unfolding of f.

Since this act seems still not generally well-known, we publish
it here with a proof separately rom [3]. In 2 we give a somewhat
abstract lemma characterizing invariant bilinear orms.

2. The uniqueness lemma for an invariant bilinear form. Let
V be a vector space over a field k with ch k=2 and let <, > V xVk
be a k-bilinear form which is either symmetric or skew-symmetric.

Let A be a subset of V. In case <, > is symmetric, we assume
<e, e> =2 for all e e A. Let us associate the graph F(A) to such A as
follows. The set of vertices of F(A)is in a one-to-one correspondence
to A so that we identify them. Two vertices e and e’ of A are con-
nected by a 1-simplex if and only if <e, e’> =0.

Let W(A) be the subgroup of GL(V) generated by the set of re-
flexions a, for e e A, where

a(u) --u-<u, e)e for u e V.


