Zeros, Primes and Rationals 103.

By Akio FUJII

Department of Mathematics, Rikkyo University

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1982)

§ 1. Introduction. The connections between the primes and the zeros of the Riemann zeta function $\zeta(s)$ have been expressed in the explicit formulae since Riemann. It is Landau who showed some arithmetical connection between them; on the Riemann Hypothesis,

$$\lim_{T\to\infty} \frac{1}{T} \sum_{0 < r < T} e^{iar} = \begin{cases} -\frac{\log p}{2\pi p^{k/2}} & \text{if } a = k \log p \\ 0 & \text{otherwise,} \end{cases}$$

where γ runs over the positive imaginary parts of the zeros of $\zeta(s)$, p is a prime and k is an integer ≥ 1 . Here we remark the following arithmetical connection between the zeros and the rationals which we have remarked in [3] and [4].

Theorem 1. Let α be a positive number and b be a real number ≤ 1 . Then on the Riemann Hypothesis,

$$\lim_{T \to \infty} rac{1}{T} \sum_{2\pi e lpha < r \leq T} e^{i_7 (\log (r/2\pi e lpha))^b} = egin{cases} -rac{e^{i\pi/4}}{2\pi} C(lpha) & if \ b = 1 \ and \ lpha \ is \ rational \ 0 & otherwise, \end{cases}$$

where $C(\alpha) = \mu(k)/(\sqrt{\alpha}\varphi(k))$ with the Möbius function $\mu(k)$ and the Euler function $\varphi(k)$ when $\alpha = l/k$, l and k are integers ≥ 1 and (l, k) = 1.

In fact, we have proved a theorem on $\sum_{C < r \leq T} e^{if(r)}$ for more general f without assuming any unproved hypothesis and given a different proof to the author's previous result (cf. [2]) which states that $f(\gamma)$ is uniformly distributed mod one, where $f(\gamma)$ may be, for example, $\gamma \log \gamma / \log \log \log \gamma$, $\gamma (\log \gamma)^{b}$ with b < 1 and γ . Landau's theorem and Theorem 1 can be extended to Dirichlet L-functions $L(s, \gamma)$ and these have also q-analogues (cf. [4]). We state here only a q-analogue of Theorem 1. Let \sum_{x} denote the summation over all non-principal characters $\chi \mod q$. We suppose, for simplicity, that q runs over the primes. Let $\gamma(\chi)$ denote an imaginary part of the non-trivial zeros of $L(s, \chi)$. Then our q-analogue of Theorem 1 can be stated as follows.

Theorem 2. Let η be an integer, α be a positive number and b be a real number ≤ 1 . We assume the generalized Riemann Hypothesis and suppose that T = T(q) satisfies $q^{\nu}(\log q)^B \ll T \ll q^A$, where ν is a constant depending on η , $B > B_0$ and A is an arbitrarily large constant.

T