Multiplier Algebra of C*-Envelope and the C*-Envelope of a Multiplier Algebra*)

By Hang-Chin LAI

Institute of Mathematics, National Tsing Hua University Hsinchu, Taiwan, Republic of China

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1982)

Abstract. Let A be a commutative Banach *-algebra with $C^*(A)$ as its enveloping C*-algebra. Denote by M(B) the multiplier algebra of a Banach algebra B. The relations between $M(C^*(A))$ and $C^*(M(A))$ are studied in this note. Let $X = \mathcal{M}(C^*(A))$ and $Y = \mathcal{M}(C^*(M(A)))$ be the maximal ideal spaces of $C^*(A)$ and $C^*(M(A))$ respectively. It is proved that if X is dense in Y then $C^*(M(A))$ can be isometrically embedded as a subalgebra in $M(C^*(A))$. If X is not dense in Y, then it is characterized that there is a homomorphism of C(Y) into $C(\beta(X))$ which is induced from the onto map of $\beta(X)$ to \tilde{X} where $\beta(X)$ is the Stone-Čech compactification of X and \tilde{X} is the weak closure of X in Y.

1. Introduction. Let A be a commutative Banach *-algebra with $C^*(A)$ as its enveloping C*-algebra. Denote by M(B) the multiplier algebra of some Banach algebra B, that is, a subalgebra of bounded linear operators $\mathcal{L}(B)$ of B which commute with algebra product. It is known that the multiplier algebra of a C*-algebra is also a C*-algebra. Thus one will know what relations can be established between $M(C^*(A))$ and $C^*(M(A))$. For example

(i) whether $C^*(M(A)) \subset M(C^*(A))$?

(ii) what condition can be $C^*(M(A)) \cong M(C^*(A))$?

In general we can not say anything about (i) and (ii). But if the character space $X = \mathcal{M}(C^*(A))$ is dense in the character space $Y = \mathcal{M}(C^*(M(A)))$, then certainly (i) holds. While the condition for (ii) is that A is a dense ideal of $C^*(A)$ containing a bounded approximate identity. If X is not dense in Y, then we find only that there is a homomorphism of C(Y) into $C(\beta(X))$, which is induced from the onto map of $\beta(X)$ to \tilde{X} where $\beta(X)$ is the Stone-Čech compactification of X and \tilde{X} is the weak closure of X in Y.

As an example, if G is a locally compact abelian group with dual group \hat{G} , then \hat{G} is homeomorphic to the character space $L^1(G)$ as well as the character space of its enveloping C^* -algebra $C^*(G)$ (cf. Bourbaki [2, p. 113]), but \hat{G} is not dense in the character space \varDelta of the bounded

With partial support from NSC Taiwan, Republic of China.