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2-dimensional cusp singularities are in one-to-one correspondence
with periodic continued fractions, which may be interpreted as cycles
of integers. We regard a cycle of integers, as a triangulation of a
circle on each vertex of which an integer is attached. Then as a
generalization of a periodic continued fraction to dimension 2, we
consider a triangulation of a compact topological surface on each edge
of which a pair of integers is attached. We show that if it satisfies
some conditions, then it induces a 3-dimensional cusp singularity in a
manner similar to the 2-dimensional case. Then the singularity has
a resolution whose exceptional set is completely determined by the
given triangulation realized as the "dual graph". The cusp singu-
larities thus obtained have a duality among themselves generalizing
that of Nakamura [2]. In the special case of real tori, we get Hilbert
modular cusp singularities.

The details will appear elsewhere.
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Results. Let N:Z and N=N(R)zR_R. Let " N\(O}-.S-be the natural projection onto a sphere Sn-1--(NR\{O})/R>o Then

Aut (N)--GL(N) acts on Sn- through . Let be the set of the pairs
(C,/) of a cone C in N and a subgroup/ of GL(N) satisfying the
following conditions" C is open, nondegenerate (i.e., C (-C)={O}),
convex and /-invariant. Moreover, the induced action of / on D
(C)- C/R>0 is properly discontinuous and fixed point free with the

compact quotient D//.
Let T N(R)z C* (C*) and let ord log I" T-N=T/CT

be the canonical map, where CT is the compact real torus N(R)z U(1)
V(1) n. Using the theory of torus embeddings [2] we can show the

following"
Theorem 1. If (C, I) is in , then we have an n-dimensional cusp

singularity (V, p)= Cusp (C, I) such that V\{p}ord-1 (C)/I.
Let ff-{Cusp (C,/)I(C,/) e }. We have a duality in ff in the

following way" Let C* be the dual cone of C in the dual vector space
M-N of N. Then/ also acts on M and C* canonically and (C*,/)


