[Vol. 58(A),

72. Cech Cohomology of Foliations and Transverse Measures

By Shigeru YAMAGAMI

Research Institute for Mathematical Science, Kyoto University (Communicated by Heisuke HIRONAKA, M. J. A., June 15, 1982)

§ 1. Introduction. For the holonomy groupoid Γ of a foliation (M, F), the transverse measure with modulus in the non-commutative integration theory [1] of A. Connes is an extension of the ordinary concept of transverse measures for the foliation. We will find in Theorem 1 a necessary and sufficient condition for the modulus δ in order that a faithful transverse measure in the Lebesgue measure class with this modulus δ exists. The condition is that δ belongs to the canonical Cech cohomology class of the foliation.

We shall define the associated foliation (\tilde{M}, \tilde{F}) for a given foliation (M, F) and show in Theorem 2 that the canonical Cech cohomology class of (\tilde{M}, \tilde{F}) vanishes and the von Neumann algebra associated with (\tilde{M}, \tilde{F}) is the crossed product of the same for (M, F) by its modular action.

§ 2. Definitions. We mainly follow the notations and the terminology in [1]. We assume that the holonomy groupoid Γ is a Hausdorff space.

Let us define a sheaf C_F^{∞} on M, whose sections are real-valued C^{∞} functions constant along leaves. More precisely, for each open subset U of M, the sections of C_F^{∞} over U is given by

(1) $C_F^{\infty}(U) = \{ f \in C^{\infty}(U) ; X f = 0 \text{ for } X \in TF \}.$

Analogously we define a sheaf L_F on M, whose sections are Lebesgue measurable functions constant along leaves. Its precise definition is as follows: Set

(2) $\tilde{L}_F(U) = \{f; f \text{ is a real-valued Lebesgue measurable function, constant along plates in } U\}.$

Here we don't distinguish two almost equal functions. $\tilde{L}_F(U)$ forms a presheaf on M and L_F is defined to be the sheaf generated by \tilde{L}_F .

Now we associate a cohomology class c(F) in $H^1(M, C_F^{\infty})$ with the foliation (M, F). Take an open covering $\mathcal{U}=\{U_{\alpha}\}$ of M by foliated charts. We denote the transversal coordinates in U_{α} by q_{α}^i . Let $c_{\alpha\beta}$ be an element of $C_F^{\infty}(U_{\alpha} \cap U_{\beta})$ defined by

(3)
$$c_{\alpha\beta} = \log \left| \det \left(\frac{\partial q_{\beta}^{i}}{\partial q_{\alpha}^{j}} \right) \right|.$$

Then $c_{\alpha\beta}$ satisfies the cocycle condition