69. On ^Z-Product of Spaces which have a σ-Almost Locally Finite Base

By Munehiko ITŌ Institute of Mathematics, University of Tsukuba (Communicated by Kôsaku Yosida, M. J. A., June 15, 1982)

1. Introduction. Let $\{X_a: a \in A\}$ be a family of topological spaces. By B_aX_a we denote the set $\prod_a X_a$ with the box product topology. For $p \in B_aX_a$ we denote the subspace $\{x \in B_aX_a: x_a \neq p_a \text{ for at most finitely many } a\}$ of B_aX_a by E_p .

Recently K. Tamano and the author [3] introduced the notion of almost local finiteness and the class of all spaces which have a σ -almost locally finite base. This class is an intermediate class between that of free L-spaces and that of M_1 -spaces. The purpose of this paper is to prove that \mathcal{E}_p has a σ -almost locally finite base if each X_a has a σ -almost locally finite base and $p \in B_a X_a$. Corollary 3.2 is an improvement on the result of S. San-ou [5]. By [4], \mathcal{E}_p need not be free L even if each X_a is metrizable and $p \in B_a X_a$. For another results on \mathcal{E} -product see [1], [2] and [5].

In this paper all spaces are assumed to be regular T_1 .

2. Preliminaries. Definition 2.1. Let X be a space and \mathcal{A} a family of subsets of X. \mathcal{A} is said to be almost locally finite in X if for every point x of X there exist a neighborhood U of x and a finite family \mathcal{B} of subsets of X such that

 $\{A \cap U : A \in \mathcal{A}\} \subset \{B \cap W : B \in \mathcal{B} \text{ and } W \text{ is a neighborhood of } x\}.$

Lemma 2.2. Let $\{X_e : e \in E\}$ be a family of spaces and $p \in B_e X_e$. For each $e \in E$ let \mathcal{A}_e be an almost locally finite family of open sets of X_e such that

if $V \in \mathcal{A}_e$ then $p_e \in V$ or $p_e \in \operatorname{Cl} V$.

Then $\{\mathcal{Z}_p \cap \prod_e V_e : (V_e)_{e \in E} \in \prod_e \mathcal{A}_e\}$ is almost locally finite in \mathcal{Z}_p .

Proof. Let $x \in \mathcal{Z}_p$.

Case 1. x=p.

For each $e \in E$ put $U_e = X_e - \bigcup \{\operatorname{Cl} V : V \in \mathcal{A}_e, \ p_e \in \operatorname{Cl} V\}$. Put $U = \mathcal{B}_p \cap \prod_e U_e$. Then U is a neighborhood of x. Let $(V_e)_{e \in E} \in \prod_e \mathcal{A}_e$ and $U \cap \prod_e V_e \neq \emptyset$. Then $x_e = p_e \in V_e$, $e \in E$. Therefore $U \cap \prod_e V_e$ is a neighborhood of x.

Case 2. $x \neq p$.

Let $E_1 = \{e \in E : x_e = p_e\}$ and $E_2 = E - E_1$. Then $|E_2| < \aleph_0$. For $e \in E_1$ put $U_e = X_e - \bigcup \{\operatorname{Cl} V : V \in \mathcal{A}_e, \ p_e \in \operatorname{Cl} V\}$. For $e \in E_2$ there exist