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62. On Certain Generalized Gaussian Sums

By Michio OZEKI
Department of Mathematics, Nagasaki University

(Communicated by Shokichi IYANAGA, M. d. A., May 12, 1982)

1. Statement of the main result. Let p be fixed prime dif-
ferent rom 2, and ,,e, be integers which are prime to p. We
denote the diagonal matrix of degree m with diagonal elements
cry, c, , c by

Let S= (1}_[_ (1}_[_... _]_ (1}_1 @} be a diagonal matrix o degree
m_> 4, and put

where r, s are non negative integers such that r <_ s.
Let q=p be sufficiently large power of p and M,(Z) be the set

of mX2 rational integral matrices, then the quantity A(S, T) is de-
fined to be the number of the solutions X in M,2(Z), which are
different mod q one from nother, of the mtrix equation
( 1 ) tXSX=_T (mod q),
where X is the transposed of X. There is a formula which expresses
A(S, T) as kind of exponential sum, so called generalized Gaussian
sum. (For details the reader is referred to [1] or [8].) Let <x} be
a function of a reM variable x defined by

oa<x} exp (2rix / q).
Let B=(b) be the binary symmetric square matrix with coefficients
in Z, and C be an element of M,.(Z). By B(q) we understand that
the quantities b, 2b and b run independently modulo q and by
C (mod q) we understand that the coefficients of C run independently
modulo q. Then the formula mentioned above reads
( 2 ) q3Aq(S, T)= Yq, a<tr {(tCSC-T)B}},

B(q)
C (,nod q)

where tr is the trce of the matrix. Let G be the ordinary Gaussin
sum G=Y,=oa exp (2=ix/p) nd (./p) be the Legendre’s symbol, then
our main results re given by the two theorems.

Theorem 1. Let the notations be as above. If q=p, a>__s+ l,
m--1 (mod 2) and m>__5, then Aq(S, T) are given by

A(S, T) q2 3(1--p-) ,._/
=0

9(4-rn)qt-
9

(s+r)(-)/9. =0 9(m

if sr and s----r--1 (mod2),


