48. On the Convergence of $\sum_{n=1}^{\infty} n^{-\alpha} \sin(n^{\beta}\theta)$

By Minoru AKITA and Takeshi KANO

Department of Mathematics, Faculty of Science, Okayama University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1982)

0. Convergence problem of $\sum_{n=1}^{\infty} n^{-\alpha} \sin(n^{\beta}\theta)$ is decided when $0 < \alpha \leq 1, 0 \leq \beta \leq 1$ (cf. [3] Theorem 84), but not when $0 < \alpha \leq 1, 1 < \beta$.

From a known result relating to the Gaussian sum (cf. [2] Theorem 4.15, also [4]), we have for $\theta = 2l\pi/(4m+1)$, $(2l+1)\pi/(2m+1)$

(1)
$$\sum_{k=1}^{n} \sin(k^2\theta) = O(1),$$

and for $\theta = (2l+1)\pi/2m$, $2l\pi/(4m+3)$

(2)
$$\sum_{k=1}^{n} \sin(k^2\theta) = Bn + O(1).$$

Hence for example, by partial summation

$$(3) \qquad \qquad \sum_{n=1}^{\infty} n^{-\alpha} \sin(n^2 \theta)$$

converges for $\theta = 2l\pi/(4m+1)^{*}$ and diverges for $\theta = (2l+1)\pi/2m$, provided $0 < \alpha \leq 1$.

On the one hand, Wilton ([9] Theorem B, cf. also [8]) showed among other things that when $0 < \alpha < 1$, $1 < \beta \leq 2 - 2\alpha$

$$(4) \qquad \qquad \sum_{n=1}^{\infty} n^{-\alpha} \exp(in^{\beta}\theta) \qquad (i^{2}=-1)$$

diverges for all $\theta > 0$.

In this paper we prove the following

Theorem. If $\alpha > 0$ and $1 < \beta < 2\alpha$, then (4) converges for all $\theta > 0.^{**}$

1. Proof of Theorem. By the Euler summation formula,

$$\sum_{m=1}^{n}rac{\sin\left(m^{eta} heta
ight)}{m^{lpha}} = rac{1}{2} igg(\sin heta+rac{\sin\left(n^{eta} heta
ight)}{n^{lpha}}igg) + \int_{1}^{n}rac{\sin\left(t^{eta} heta
ight)}{t^{lpha}}dt \ + eta heta\int_{1}^{n}rac{\phi(t)\cos\left(t^{eta heta} heta
ight)}{t^{lpha-eta+1}}dt - lpha\int_{1}^{n}rac{\phi(t)\sin\left(t^{eta heta} heta
ight)}{t^{lpha+1}}dt \ = rac{1}{2} igg(\sin heta+rac{\sin\left(n^{eta heta} heta
ight)}{n^{lpha}}igg) + I_{1}^{n}+eta heta I_{2}^{n}-lpha I_{3}^{n}, ext{ say,}$$

where

^{*) [6]} appears to contain some incorrect arguments. It also contradicts to [9] e.g. when $0 < \alpha \le 1/3$.

^{**)} Note that we cannot admit $\beta = 2\alpha$ for $\alpha < 1/2$ in Wilton's, and for $\alpha > 1/2$ in our theorem as shown by (2), (3).

In another way, we have proved that (4) converges for all $\theta > 0$, provided $\alpha = 1/2$, $\beta < 3/2$ (cf. [1]).