30. Singular Integrals on a Locally Compact Abelian Group with an Action of a Compact Group

By Köichi SAKA

Institute of Mathematics, Akita University

(Communicated by Kôsaku Yosida, m. j. a., March 12, 1982)

Let G be a semidirect product group of a closed normal abelian subgroup A and a compact subgroup K. An action of K on A is given by $k(a) = kak^{-1}$ for all $k \in K$ and $a \in A$. Let \hat{A} be the dual group of A. If $k \in K$ and $\gamma \in \hat{A}$, the equation that $\langle k(\gamma), a \rangle = \langle \gamma, k^{-1}(a) \rangle$ for all $a \in A$, defines an action of K on \hat{A} . If E is a finite dimensional vector space, then for $1 \leq p \leq \infty$, $L^{p}(A; E)$ will denote the Banach space of all L^{p} functions on A with values in E. Suppose (λ, E) is a finite dimensional unitary representation of K. A G-action $\tau(g)$ on $L^{p}(A; E)$ will be defined by $\tau(g)f(a') = \tau(ak)f(a') = \lambda(k)f(k^{-1}(a^{-1}a'))$ for all $a' \in A$ and all $g \in G$ with g = ak, $a \in A$, $k \in K$. The Fourier transform of f in $L^{1}(A; E)$ is defined by $\mathfrak{F}f(\gamma) = \int_{A} \langle \gamma, \overline{a} \rangle f(a) da$ for all $\gamma \in \hat{A}$. We give a definition of a polar decomposition (Σ, C) of A (cf. [3]). Let K_0 be a closed subgroup of K, and let C be a Borel subset of A whose elements are invariant under the action of K_0 . Let Σ be the homogeneous space K/K_0 . We say that (Σ, C) is a polar decomposition of A provided that

(a) for each r in C the stability group of r in K is precisely K_0 , and

(b) the mapping $(kK_0, r) \mapsto k(r)$ is a homeomorphism of $\Sigma \times C$ onto a Borel subset A_0 of A whose complement in A is of Haar measure zero in A. To avoid a trivial case we assume that the identity element e of A does not belong to A_0 throughout this paper.

Let \hat{K} be the set of all equivalence classes of irreducible unitary representations of K. For π in \hat{K} we denote by $d(\pi)$ the dimension of π and by $m(\pi)$ the multiplicity with which π occurs in $L^2(\Sigma)$. Le \tilde{K} be the subset of \hat{K} consisting of all elements with $m(\pi) \neq 0$. We set \tilde{K}_0 $= \tilde{K} - \{$ the trivial representation $\}$. Let (π, H_π) be an element of \tilde{K} and let $\{v_j^*\}_{j=1,\dots,d(\pi)}$ be a fixed orthonormal basis of H_π such that $\pi(k_0)v_j^\pi = v_j^\pi$, $j=1, \dots, m(\pi)$ for all k_0 in K_0 . We put $Y_{ij}^\pi(k) = \sqrt{d(\pi)}(v_i^\pi, \pi(k)v_j^\pi)$, $i=1,\dots, d(\pi), j=1,\dots, m(\pi)$. Then the set of functions $\{Y_{ij}^\pi: \pi \in \tilde{K}, i=1,\dots, d(\pi), j=1,\dots, m(\pi)\}$ is an orthonormal basis of $L^2(\Sigma)$. We call the functions Y_{ji}^π generalized spherical harmonics in $L^2(\Sigma)$. Throughout this paper we will use a fixed set of generalized spherical harmonics Y_{ij}^π and we assume that A and \hat{A} have polar decompositions