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Introduction. This paper shows that there exists strong solu-
tion in L of the nonstationry Nvier-Stokes system with some first
order boundary condition. To prove this we study the Stokes operator
with such boundary condition and use the semigroup approach in
Fujita-Kato [2], [8] and Gig-Miyakawa [7].

Let D be a bounded domain in R with smooth boundary S. We
consider the Navier-Stokes initial value problem concerning velocity
u=(u, ..., u) and pressure p:
(N) 3u/3t--lu+(u, 17)u+lzp=O, divu=0 in D(O, T), u]=o=a in D,
where (u, /7)--= u(3/3x). The boundary condition we give is
(NB) u.,=O, Bu=O on S(0, T).
Here denotes the interior unit normal vector t x e S and u.,=u’,

+... +u,. We assume that B is a first order boundary differential
operator and that Bu.,=O if u.,=0.

To study this Navier-Stokes system in Lp we define the Stokes
operator as follows. Let X (lp oo) denote the set of divergence
free vector functions w e L(D) satisfying w.,=0. Let P be the con-
tinuous projection from L(D) to X,; see [3]. Then we set A=-P/
with domain D(4)={ue W(D);Bu=O}X and call 4z the Stokes
operator with boundary condition B here W(D) denotes the Sobolev
space of order two.

Concerning A we shll show that --A generates an analytic semi-
group in Xp if B satisfies an appropriate algebraic assumption (see
the assumption (B) in 1) the slip boundary condition is included in
our case. Next we shall characterize D((I+L)) (0al) for large
L. We shall also study A*, the dual of A.

Following Kato-Fujita [2], [8], we transform (N), (NB) into the
evolution equation in X,
(AN) du/dt-+-ABu+P(u, lZ)u=O (tO), u(O)=a.
Using results on A, we get the existence and the uniqueness of a (local)
strong solution of (AN).

Since our methods are similar to those of Giga [4]-[6] and Gig-

Miyakawa [7] who studied the Dirichlet problem for (N), we do not
give the detailed proof here. However, our results generalize that of


