of a Non-Connected Lie Group

By C. FRONSDAL^{*)} and T. HIRAI^{**)}

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1981)

1. Let G be a Lie group. We call a character of an irreducible unitary representation (IUR) of G an irreducible character of G. Little is studied about the regularity of irreducible characters when G is not connected. In this note, we present an interesting example from this point of view.

First recall some known facts. Let G be reductive, and assume that $\operatorname{Ad}(G)$ is contained in the connected complex adjoint group of \mathfrak{g}_c , where \mathfrak{g}_c denotes the complexification of the Lie algebra \mathfrak{g} of G. Then any irreducible character is a distribution on G which coincides with a locally summable function on G, analytic on an open dense subset of G (see [2, p. 132]). On the other hand, Shintani studied in [4] the relation between IURs of the group G generated by $G^0 = SL(2, \mathbb{C})$ and σ , and those of $G_\sigma = SL(2, \mathbb{R})$, where σ is the complex conjugation of matrices. In this case, $G = G^0 \cup G^0 \sigma$, and $\operatorname{Ad}(\sigma)$ is an outer automorphism of \mathfrak{g}_c . Hence, to use the explicit forms of irreducible characters of G and those of G_σ , as an essential tool, he had to establish for G the similar result as above [4].

Now let G be nilpotent and connected. Then the character of an infinite-dimensional IUR is a distribution on G supported by a subvariety of lower dimension. In fact, by Kirillov's orbit method, such a representation is equivalent to that induced from a proper connected subgroup H by a unitary character of it. Therefore, the character of the representation is supported by the closure $\overline{G(H)}$ of the union G(H) of gHg^{-1} over $g \in G$. Since H is proper, the normalizer N_G of H in G is strictly bigger than H. Put $\overline{g}(H) = gHg^{-1}$ for $\overline{g} = gN_G$, then G(H) is the union of $\overline{g}(H)$ over $\overline{g} \in G/N_G$. Note that N_G is connected, and use the structure of a connected nilpotent Lie group given in [3, p. 83], then we see that dim $\overline{G(H)} = \dim H + \dim (G/N_G) < \dim G$.

In these connections, we are interested in the following problems. Assume that G is unimodular, and that any irreducible character is a distribution on G, that is, for any IUR T of G, the operator

$$T(\varphi) = \int_{g} \varphi(g) T(g) dg$$
 for $\varphi \in C_0^{\infty}(G)$

2.

^{*)} Physics Department, UCLA.

^{**)} Department of Mathematics, Kyoto University.