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1. Statement of results. In 1909 Wieferich ([1]) proved that if
an odd prime p satisfies the condition

2--- 1 0 (mod p),
then the ease I o Fermat’s Last Theorem is true or this prime p, i.e.
under the condition (xyz, p)--l, there exists no integral solution or
the Diophantine equation x;+y=z. Moreover, it is now known (see
or example [2]) that we can deduee the same conclusion, if an odd
prime p satisfies

a"-’- 1 0 (mod p)
orsorne prime value a, 2<a 43.

Now we shall call
( ) av-- 1=0 (mod p)
the generalized Wieferieh condition or a (a may be any natural
number). We define or real x0,

F(x)--{p;p is an odd prime x, p satisfies (,)}.
We have an average type result as to the cardinal F(x) o F(x),
which states as ollows

Theorem 1. Let be an arbitrary fixed real number satisfying

1/261. We have, if x286,

(F(x)--loglog x/O((loglog x))+ C- / ((log x)-

for all a such ha$ 2ax wih a$ mos
2x*(log log x)

exceptions of a, where C=’+ ,:rm{log(1--1/p)+l/p} and . is
Euler’s constant. (f(x) being positive valued function of x, O(f(x))
denotes a function of x whose absolute value f(x).)

Similarly we have"
Theorem 2. Let D be an arbitrary fixed real number 0 and

y> x. We defined for a natural number a and real xO,
F)(x)= {p p is an odd prime x, a--1--0 (mod p)}.

Then we have

F(x) E 1--I D
3<px 0
p: prime


