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1. Generally, a property of open Riemann surfaces is not always
preserved by a quasiconformal mapping. For example, the class O,
the class of Riemann surfaces on which there exists no non-constant
bounded analytic function, is not quasicomformally invariant (cf. [1],
[3]). In this paper, we shall study properties of Riemann surfaces
which are not preserved by quasiconformal mappings.

Let R,, R, be open Riemann surfaces and f: R,—R, be a quasicon-
formal mapping. The main purpose of this paper is to construct the
counter examples for the following problems.

I. Suppose that R, (j=1,2) are hyperbolic, that is, R, have
Green’s functions g, (-,p,) with poles at p,e R,. Are the Green’s
functions quasi-invariant? Precisely, dose the following inequality

9:(z, ) <Mg(f(2), f(p,)
hold for any point z on R, and a constant M(>0) not depending on z?

II. Suppose R, is in Widom class (cf. [5]), that is, R, is hyperbolic

and for each point p, € R,,

j B(t: P)AE< + oo,

where f(t: p,) is the first Betti number of {p e R,: g,(p, p0)>t}. Is R,
also in Widom class?

III. Let R, and R, be not in O,,. Suppose that R, is AB-separa-
ble, that is, for any points p, g € R, (p#¢q) there is a bounded analytic
function g such that g(p)£g(q). Is R, also AB-separable?

Finally in § 4, we shall give a theorem concerning with Problems
IT and III.

2. First of all, we recall the following proposition due to A.
Beurling and L. Ahlfors (cf. [1], [2]).

Proposition. There exists a quasiconformal automorphism of
the upper half plane with the boundary function h(x) (x e R) if and
only if
(1) Sl Mx+t)—h(x) <

= Mx)—h(x—1t) —
for some constant p=1 and for all x and t(50).



