7. Scattering Techniques in Transmutation and some Connection Formulas for Special Functions

By Robert CARROLL*) and John E. GILBERT**)
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1981)

- 1. Introduction. Fadeev in [11] develops a technique for displaying certain operators of interest in scattering theory in terms of transmutations; this allows one to give an essentially unified derivation of the Gelfand-Levitan and Marčenko equations (which is generalized in Carroll [6]). In particular the link between the Gelfand-Levitan and Marčenko equations is shown in [11] to be a certain transmutation operator \tilde{U} and in this article we determine the natural generalization $\tilde{\mathcal{B}}$ (or $\tilde{\mathcal{B}}$) of \tilde{U} in the transmutation framework of Carroll [2]–[5]; then, in a context based on harmonic analysis in rank one noncompact symmetric spaces, we show how the use of such operators \mathcal{B} provides a transmutation meaning and abstract derivation for various types of formulas connecting special functions with integrals of Riemann-Liouville and Weyl type (cf. Flensted-Jensen [12], Koornwinder [13], Askey-Fitch [1], Chao [8]). One particular feature of \tilde{U} which relates Riemann-Liouville and Weyl type integrals in the relation $\tilde{U}=(U^{-1})^*$ for a basic transmutation operator U and this provides complementary types of triangular kernels (cf. here Erdélyi [10] for a related use of adjointness). In our more general framework adjointness plays a different role but we obtain similar triangularity results for the analogous \mathcal{B} and $\widetilde{\mathcal{B}}$ by other methods (Theorem 2.1). The details will appear in [7].
- 2. Basic constructions. We will work with differential operators of the form P(D)u=(Au')'/A where A(x) will have properties modeled on P(D) being the radial Laplace-Beltrami operator on a noncompact Riemannian symmetric space of rank one (cf. [9], [12], [13] for details). Let $\varphi_{\lambda}^{P}(t)$ be a "spherical function" satisfying $P(D)\varphi_{\lambda}^{P}=(-\lambda^{2}-\rho^{2})\varphi_{\lambda}^{P}$, $\varphi_{\lambda}^{P}(0)=1$, and $D_{t}\varphi_{\lambda}^{P}(0)=0$, where $\rho=\lim(1/2)A'/A$ at $t\to\infty$. Thus $\varphi_{\lambda}(t)=\varphi_{\lambda}^{P}(t)\sim H(t,\mu)$ for $\mu=-\lambda^{2}$ and $\hat{P}=P+\rho^{2}$ (notation of [2]–[5]). We set $\Omega(x,\mu)=\Omega_{\lambda}(x)=\Omega_{\lambda}^{P}(x)=\Delta_{P}(x)\varphi_{\lambda}^{P}(x)$ where $\Delta_{P}(x)=A(x)$ for $\Delta_{P}(x)=A(x)$ for $\Delta_{P}(x)=A(x)=A(x)$ for $\Delta_{P}(x)=A(x)=A(x)$ and $\Delta_{P}(x)=A(x)=A(x)=A(x)$ here is $\Delta_{P}(x)=\Delta_{\alpha}(x)=(e^{x}-e^{-x})^{2\alpha+1}(e^{x}+e^{-x})^{2\beta+1}$ with $\rho=\alpha+\beta+1$ in which

^{*} University of Illinois at Champaign-Urbana.

^{**)} University of Texas at Austin.