34. An Asymptotic Property of a Certain Brownian Motion Expectation for Large Time

By Hiroyuki Ôkura

Department of Mathematics, Osaka University

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1981)

1. Let $(X(t): t \ge 0, P)$ be the Brownian motion in \mathbb{R}^d starting from X(0)=0. We give an asymptotic formula for the quantity $(1) \quad J(t)=J(t;\varphi)=E\left[\exp\left\{-\nu\int_{\mathbb{R}^d}\left\{1-\exp\left(-\int_0^t\varphi(X(\sigma)-y)d\sigma\right)\right\}dy\right\}\right]$ as $t\to\infty$, where E denotes the expectation with respect to P, φ a nonnegative Borel function on \mathbb{R}^d and $\nu>0$ a constant. Asymptotic behavior of J(t) has been investigated in connection with the study of the spectral distributions of the Schrödinger operators $-1/2\varDelta+q(x)$ with random potentials of the form $q(x)=\sum \varphi(x-\xi_n)$, where $\{\xi_n\}$ is the support of the Poisson random measure with intensity $\nu>0$ (see [2]-[7]).

Donsker and Varadhan [2] proved that if $\varphi(x) = o(1/|x|^{d+2})(|x| \to \infty)$ and $\int \varphi(x) dx > 0$, then

(2)
$$\lim_{t \to \infty} t^{-d/(d+2)} \log J(t) = -k(\nu)$$

exists and

(3)
$$k(\nu) = \nu^{2/(d+2)} \frac{d+2}{2} (2\lambda_1/d)^{d/(d+2)},$$

where λ_1 is the smallest eigenvalue for $-1/2\Delta$ in a sphere of unit volume with zero boundary condition. On the other hand, Pastur [7] proved that if $\varphi(x) \sim K/|x|^{d+\beta}(|x| \rightarrow \infty)$, where K > 0 and $0 < \beta < 2$, then (4) $\lim_{t \to \infty} t^{-d/(d+\beta)} \log J(t) = -\kappa(\nu, \beta, K)$

exists and

(5)
$$\kappa(\nu, \beta, K) = \nu K^{d/(d+\beta)} \Gamma\left(\frac{\beta}{d+\beta}\right) \Omega_d,$$

where Ω_d is the volume of a sphere of unit radius. The following theorem covers the critical case of $\varphi(x) \sim K/|x|^{d+2}(|x| \to \infty)$.

Theorem 1. Let $(X(t), t \ge 0)$ be the d-dimensional Brownian motion with X(0)=0. Suppose φ is a non-negative bounded Borel function of \mathbb{R}^d such that $\varphi(x) \sim K/|x|^{d+2}(|x|\to\infty)$, where K>0. Define J(t) by (1). Then for any $\nu > 0$

(6) $\lim_{t\to\infty} t^{-d/(d+2)} \log J(t) = -C(\nu, K)$

exists and $C(\nu, K) = \inf_{f \in \mathcal{F}_0} [I(f) + \Phi(f)],$ where