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Introduction. We supplement the previous note [6] by describing
liftings of congruences. In particular, the congruences in Theorems
2 and 3 of [6] are considered to be congruences lifted from degree 1 to
degree 2. The author would like to thank Prof. It. Maass for com-
municating that Prof. D. Zagier ([16]) proved completely the Conjec-
tures 1 and 2 of [5] by using recent results of Prof. W. Kohnen after
Maass [10] [11] [12] and Andrianov [2] (cf. 1 below).

1. Liftings. We denote by M(F) (resp. S(F)) the vector
space over the complex number field C consisting of all Siegel modular
(resp. cusp) forms of degree n and weight k for integers n>__ 0 and k >__ 0.
The space of Eisenstein series is denoted by E(F) which is the or-
thogonal complement of S(F) in M(F) with respect to the Petersson
inner product. We say that a modular form f in M(F) is eigen if f
is a non-zero eigenfunction of all Hecke operators on M(F). Let f
be an eigen modular form in M(F) for n--l, 2. We define the
(standard) Hecke polynomial at a prime p by H(T, f)--1--(p, f)T
+p-T if n=l, and H(T, f)=l--(p, f)T+((p)2--2(p)--p-’)T
--p-b(p)T+p’-T if n=2, where T is an indeterminate and (m, f)
is the eigenvalue of the Hecke operator T(m) for f" T(m)f=,(m, f)f.
We define the (standard) L-function by L(s, f)-- 1-[ H(P-, f)- where
p runs over all prime numbers. We denote by Q(f) the field generated
by ((m, f)lm>=l} over the rational number field Q, and we put Z(f)
Q(f) Z, where Z is the rational integer ring, and Z is the ring of

all algebrai.c integers in C. Then Q(f) is a totally real finite extension
of Q, and Z(f) is the integer ring of Q(f). See [7] which contains the
case of general degree.

We consider the following two liftings from degree 1 to degree 2
for each even integer k >=4.

(A) The first lifting is the C-linear injection ]" M(F)M(F)
defined in [8] (cf. [6] [9]), which is given by the (generalized) Eisenstein
series. For each eigen modular form f in M(F) we have that" [f]
is an eigen modular form satisfying H(T, [f])=H(T, f)H(p-2T, f)
for all p and L(s, [f])--L(s, f)L(s-k+ 2, f).

(B) The second lifting is the C-linear injection a" M_(F)


