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All number fields we consider are in the complex number field. The
symbol (S} denotes a multiplicative group generated by S.

For a finite extension k/Q, let E be the group of units of k, and
E be the group generated by all units o proper subfields of k together
with roots of unity in k. We define the group H of relative units of
k by
H={ e E N/,(z) is a root of unity ior a proper subfield k’ o k}.

Let us consider the problem to construct E with the help of E.
It is interesting to utilize H together with E when (E "E)= / oo.

Hasse [2] has treated such a case when k is a real cyclic quartic number
field. We are going to treat the case when k is a non-galois quartic
(resp. sextic) number field having a quadratic subfield (resp. a quadratic
and a cubic subfields). Then the galois closure o k/Q is a dihedral
extension o degree 8 or 12 over Q. We restrict .our investigation on
such extensions.

From now on, we assume n= 2 or 3. Let L/Q be a galois extension
of degree 4n with the galois group

G (, } =() 1.
The invariant subfield of the subgroup (r} (resp. (ar}, (an}) is denoted
by K (resp. F,/2), and the maximal abelian subfield by A. Then Kand F
are non-galois number fields o degree 2n which we are going to study.
The quadratic subfield of K (resp. F) is denoted by K. (resp. F.). When
n=3, the cubic subfield o both K and F is denoted by K. The quartic
field A is the composite field of K. and F. which contains another quad-
ratic subfield A. Note that A=9 when n=2.

It is easy to show the following, which is in Nagell [6] when n= 2.
Proposition 1. When LR=f2, we have E:=E and EF=E.
Therefore we treat the two cases:

CaseI: LR=K. CaseII: LcR.
Taking into account that all roots of unity of L is contained in the
quartic subfield A, we take and fix a generator (resp. , p) o the group
of roots o unity o A (resp. A., F).

1. Type of EK and EF. A typical example o K and F are a pure
number field of degree 2n. The method, which is used in Stender [8],


