113. Analyticity of Complements of Complete Kähler Domains^{*)}

By Takeo OHSAWA Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1980)

§1. Statement of the result. Let A be a real submanifold of a complex manifold M. We want to know the conditions on X:=M-A which force A to be a complex submanifold of M. Our main result is the following

Theorem. Under the above notations, assume that

1) X has a complete Kähler metric

and that

2) A is a regular submanifold of class C^1 with real codimension 2. Then A is a complex submanifold of M.

Our theorem amounts to a partial answer to the following problem which was asked by T. Nishino.

Problem. Let $D \subset \mathbb{C}^n$ be a domain and $f: D \to \mathbb{C}$ a continuous function. Assume that there exists a plurisubharmonic function φ on a neighbourhood of $G(f) := \{(z', f(z')); z' \in D\}$ such that $G(f) = \{z; \varphi(z) = -\infty\}$. Is G(f) a complex submanifold of $D \times \mathbb{C}$?

I express sincere thanks to Dr. Y. Nishimura, who told me the problem and encouraged me.

§ 2. Proof of the theorem. Let X be a complex manifold of dimension n. X is called a complete Kähler manifold if X has a complete Kähler metric, i.e., a Kähler metric (of class C^2) which makes X a complete metric space.

Proposition (cf. Corollary (1.7) in [1]). Let X be a complete Kähler manifold, φ a bounded strictly plurisubharmonic function of class C⁴ on X and f a measurable (n, 1)-form on X. Assume that f is square integrable with respect to the metric

$$ds^{\scriptscriptstyle 2}\!:=\!\sum\limits_{\scriptscriptstyle lpha,eta}rac{\partial^2 arphi}{\partial z^{\scriptscriptstyle lpha}\partial ar z^{\scriptscriptstyle eta}}dz^{\scriptscriptstyle lpha}dar z^{\scriptscriptstyle eta},$$

where (z^1, \dots, z^n) denotes a local coordinate of X. Then there exists a square integrable (n, 0)-form g on X satisfying $\bar{\partial}g = f$ if and only if $\bar{\partial}f = 0$.

Let M be a complex manifold containing X as a domain. We assume that A := M - X is a real two codimensional regular submanifold

⁹ The author was supported by Alexander-von-Humboldt Foundation.