109. Riemann-Lebesgue Lemma for Real Reductive Groups

By Masaaki EGUCHI^{*)} and Keisaku KUMAHARA^{**)}

(Communicated by Kôsaku YOSIDA, M. J. A., Dec. 12, 1980)

1. Introduction. Let G be a Lie group of class \mathcal{H} , which is a reductive group defined in §2. Let P = MAN be a cuspidal parabolic subgroup of G and its Langlands decomposition. For any representation σ of discrete series of M and (not necessarily unitary) character λ of A, we can associate a continuous representation $\pi_{\sigma,\lambda}^{(P)}$ of G. The Fourier-Laplace transform of $f \in C_c(G)$ is defined by

$$\hat{f}_P(\sigma, \lambda) = \int_G f(x) \pi_{\sigma,\lambda}^{(P)}(x) \, dx.$$

Let V_{σ} be the representation space of σ . Let K be a maximal compact subgroup of G. Then $\hat{f}_{P}(\sigma, \lambda)$ is an integral operator on a subspace \mathfrak{F}_{σ} of $L^{2}(K; V_{\sigma})$ with the kernel function $\hat{f}_{P}(\sigma, \lambda; k_{1}, k_{2}), k_{1}, k_{2} \in K$. If λ is unitary, $\hat{f}_{P}(\sigma, \lambda)$ is defined for $L^{1}(G)$ and it vanishes when $(\sigma, \lambda) \rightarrow \infty$ in the sense of hull-kernel topology (see [2, p. 317]). The purpose of the present paper is to show that there exists a tube domain \mathfrak{F}^{1} , containing the unitary dual A^{*} of A, of the complexification of A^{*} such that for almost all $(k_{1}, k_{2}) \in K \times K \hat{f}_{P}(\sigma, \lambda; k_{1}, k_{2})$ is defined for $f \in L^{1}(G)$ and it vanishes when $\lambda = \xi + i\eta \in \mathfrak{F}^{1}$ and $(\sigma, \lambda) \rightarrow \infty$.

2. Notation and preliminaries. If V is a real vector space, V_c denotes its complexification. Let G be a Lie group with Lie algebra g. Let G^0 be the connected component of the unit of G. We denote by G_1 the analytic subgroup of G whose Lie algebra is $g_1=[g, g]$. Let G_c be the connected complex adjoint group of g_c . A Lie group G with Lie algebra g is called of class \mathcal{H} if G satisfies the following conditions: (1) g is reductive and $\operatorname{Ad}(G) \subset G_c$; (2) the center of G_1 is finite; (3) $[G:G^0] < \infty$. In the sequel, we assume that G is a Lie group of class \mathcal{H} . If L is a Lie group, we denote by $\mathfrak{l} = \operatorname{LA}(L)$ the Lie algebra of L.

Let K be a maximal compact subgroup of G. Let $\mathfrak{g}=\mathfrak{t}\oplus\mathfrak{s}$, $\mathfrak{t}=\mathbf{LA}(K)$, be the Cartan decomposition of \mathfrak{g} and θ the corresponding Cartan involution. Let \mathfrak{a}_0 be a maximal abelian subspace of \mathfrak{s} and \mathfrak{a}_0^* its dual space. We denote by Δ the set of all roots of $(\mathfrak{g}, \mathfrak{a}_0)$. For $\alpha \in \Delta$, let \mathfrak{g}_α be the corresponding root space. We fix an order in \mathfrak{a}_0^* and denote by Δ^+ the set of all positive roots. We set $\mathfrak{n}_0 = \sum_{\alpha \in \Delta} \oplus \mathfrak{g}_\alpha$. Let M_0 be the centralizer of \mathfrak{a}_0 in K. We put $A_0 = \exp \mathfrak{a}_0$, $N_0 = \exp \mathfrak{n}_0$

^{*)} Faculty of Integrated Arts and Sciences, Hiroshima University.

^{**&#}x27; Faculty of General Education, Tottori University.