No. 10]

107. Surgery of Domain and the Green's Function of the Laplacian

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1980)

§1. Introduction and results. Let M be a bounded domain in \mathbb{R}^m with smooth boundary. Let N be a compact connected regular smooth submanifold of M. We put $n = \dim N$. In this note we assume that $m \ge n+2\ge 3$. For any sufficiently small $\varepsilon > 0$, let Γ_{ϵ} be the ε -tubular neighbourhood of N defined by

$$\Gamma_{\epsilon} = \{x \in M; \operatorname{dist}(x, N) < \epsilon\}.$$

We put $M_{\mathfrak{s}} = M \setminus \overline{\Gamma}_{\mathfrak{s}}$.

Let G(x, y) (resp. $G_{\epsilon}(x, y)$, $\epsilon > 0$) be the Green's function of the Laplacian with the Dirichlet condition on ∂M (resp. $\partial M \epsilon$).

In this paper we report the following theorems.

Theorem 1. Assume $m-n \ge 5$, then for any fixed $x, y \in M \setminus N$

$$G_{\bullet}(x, y) = G(x, y) - 3S_{\flat}\varepsilon^{m-n-2} \int_{N} G(x, w)G(y, w)dw + O(\varepsilon^{m-n})$$

holds when ε tends to zero. Here S_k denotes the area of the unit sphere in \mathbf{R}^k .

Theorem 2. Assume m-n=3 or 4, then for any fixed $x, y \in M \setminus N$ $G_{\bullet}(x, y) = G(x, y) - (m-n-2)S_{m-n}\varepsilon^{m-n-2}\int_{N}G(x, w)G(y, w)dw + O(K(\varepsilon))$ holds when ε tends to zero. Here $K(\varepsilon) = \varepsilon^{4}|\log \varepsilon|$ in case m-n=4 and $K(\varepsilon) = \varepsilon^{2}$ in case m-n=3.

Theorem 3. Assume m-n=2, then for any fixed $x, y \in M \setminus N$

$$G_{\epsilon}(x, y) = G(x, y) + (2\pi)(\log \varepsilon)^{-1} \int_{W} G(x, w) G(y, w) dw + O((\log \varepsilon)^{-2})$$

holds when ε tends to zero.

It should be remarked that the remainder terms $O(\varepsilon^{m-n})$, $O(K(\varepsilon))$, $O((\log \varepsilon)^{-2})$ in Theorems 1–3 are not uniform with respect to x, y.

Theorems 1-3 above are the versions of the Schiffer-Spencer formula which describes the asymptotic property of $G_{\epsilon}(x, y)$ when ε tends to zero in case m=2 and n=0. See Schiffer-Spencer [2]. The author considers the case $m\geq 3$, n=0 in Ozawa [1].

Using the techniques developed in [1], we can get an asymptotic formula for eigenvalues of the Laplacian. We give some notations. Let $0 > \lambda_1(\varepsilon) \ge \lambda_2(\varepsilon) \ge \cdots$ be the eigenvalues of the Laplacian in M_{\bullet} with the Dirichlet condition on ∂M_{\bullet} . And let $0 > \lambda_1 \ge \lambda_2 \ge \cdots$ be the eigen-