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1. Introduction. Let (M, g) and (N, h) be compact Riemannian
manifolds and C’(N, M) be the space of all smooth maps from N to M
with the C topology. For f e C(N, M) we define its energy E(f) by

1 h’Off Off(1.1) E(f)=- _ Ox Ox
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A harmonic map is, by definition, a critical point of the functional E.
A harmonic map is said to be minimizing if it minimizes energy in its

connected component of C=(N, M), i.e. in its homotopy class.

When dim N= 1, N is a circle S and a harmonic map f" S--M is

a closed geodesic. It is well known that every component of C=(S, M)
contains a minimizing closed geodesic. In contrast with this, when
dim N=2, it is not always true that there exists a minimizing harmonic
map in each component of C=(N, M). For instance there exists no
minimizing harmonic map of degree +1 from a Riemann surface of
genus =>1 to a Riemann sphere whatever metrics are chosen on them
([5]).

On the other hand, Sacks and Uhlenbeck [8] established an ex-

istence result when N=S. Their result was applied to the proof of
Frankel’s conjecture by Siu and Yau [9] and to the study on the topo-
logy of 3-manifolds by Meeks and Yau [7]. The following is a result
of Sacks and Uhlenbeck refined by Siu and Yau. Let M be a compact
1-connected Riemannian manifold. Let foe C=(S, M). Then there
exist minimizing harmonic maps f, ., f e C=(S, M) such that, f,=fo in re(M) and that
i=l

(1.2) , E(f,)= inf{ E(g,)[p e N, g,= fo in m.(M)}.
i=1 i=l i=l

However it has been unknown whether one can always find a single

minimizing harmonic map homotopic to f0 or not.
The purpose of this paper is to give a Riemannian manifold M and

a component of C(S, M) such that no minimizing harmonic map ex-
ists in this component.

2. Statement of the result. Theorem. Let M be a compact
1-connected Khler surface. Suppose there are two disjoint rational


