57. On the Strong Convergence of the Cèsaro Means of Contractions in Banach Spaces

By Kazuo Kobayasi*) and Isao Miyadera**)

(Communicated by Kôsaku Yosida, M. J. A., June 12, 1980)

1. Introduction. Throughout this paper X denotes a uniformly convex Banach space and C is a nonempty closed convex subset of X. A mapping $T: C \rightarrow C$ is called a contraction on C, or $T \in \text{Cont}(C)$ if $||Tx-Ty|| \leq ||x-y||$ for every $x, y \in C$. A family $\{T(t); t \geq 0\}$ of mappings from C into itself is called a contraction semi-group on C if T(0) = I (the identity on C), T(t+s) = T(t)T(s), $T(t) \in \text{Cont}(C)$ for $t, s \geq 0$ and $\lim_{t \to 0+} T(t)x = x$ for every $x \in C$. The set of fixed points of a mapping T will be denoted by F(T).

The purpose of this paper is to prove the following (nonlinear) mean ergodic theorems.

Theorem 1. Let $T \in \text{Cont}(C)$, $x \in C$ and $F(T) \neq \emptyset$. If $\lim_{n\to\infty} ||T^n x - T^{n+i}x||$ exists uniformly in $i=1, 2, \dots$, then there exists an element $y \in F(T)$ such that

(the strong limit)
$$\lim_{n\to\infty} n^{-1} \sum_{i=0}^{n-1} T^{i+k} x = y$$
 uniformly in $k=0, 1, 2, \cdots$.

Theorem 2. Let $\{T(t); t \geq 0\}$ be a contraction semi-group on C, $x \in C$ and $\bigcap_{t>0} F(T(t)) \neq \emptyset$. If $\lim_{t\to\infty} \|T(t)x - T(t+h)x\|$ exists uniformly in h>0, then there exists an element $y \in \bigcap_{t>0} F(T(t))$ such that

$$\lim_{t\to\infty} t^{-1} \int_0^t T(s+h)x \ ds = y \qquad uniformly \ in \ h \ge 0.$$

These results have been known in Hilbert space (cf. [1, 2]).

- 2. Proofs of Theorems. For a given $T \in \text{Cont}(C)$ we set $S_n = n^{-1}(I + T + \cdots + T^{n-1})$ for every $n \ge 1$. We start with the following
- Lemma 1. Let $T \in \text{Cont}(C)$, $x \in C$ and $F(T) \neq \emptyset$. Suppose that (*) $\lim_{n \to \infty} ||T^n x T^{n+i} x||$ exists uniformly in $i = 1, 2, \cdots$. Then we have
- (1) $\lim_{n,m\to\infty} ||2^{-1}(S_nT^{l+n}x+S_mT^{l+m}x)-T^l(2^{-1}S_nT^nx+2^{-1}S_mT^mx)||=0$ uniformly in $l=1,2,\cdots$. In particular,
- (2) $\lim_{n\to\infty} ||S_n T^{l+n} x T^l S_n T^n x|| = 0$ uniformly in $l=1, 2, \cdots$

Proof. Take an $f \in F(T)$ and an r > 0 with $r \ge ||x - f||$, and set $D = \{z \in X ; ||z - f|| \le r\} \cap C$ and $U = T|_D$ (the restriction of T to D). Since D is bounded closed convex and $U \in \text{Cont}(D)$, by virtue of [4, Theorem

^{*)} Department of Mathematics, Sagami Institute of Technology, Fujisawa.

^{**)} Department of Mathematics, Waseda University, Tokyo.