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In this Note, we shall show that all NB-structures on a BCK-al-
gebra are completely determined by a simple way, and the NB-struc-
tures give some surprising simplifications of complicated conditions
which define various classes of BCK-algebras. Thus the NB-structures
on a BCK-algebra may be considered as an auxiliary apparatus.

The NB-structure on a BCK-algebra was independently introduced
by the present author and H. Rasiowa (see [1], [3]). To define it, we
first recall a definition of BCK-algebras and its basic properties (for
detail, see [2]).

A BCK-algebra (X;,, 0) is an algebra of type (2, 0) satisfying
the following conditions (1)-(5).

(1) ((x,y),(x,z)),(z,y)--O,
(2) (x,(x,y)),y=O,
(3) x,x=O,
(4) O,x=O,
( 5 ) x y y x 0 implies x y.
If we define x<_y by x,y--0, then X is a partially ordered set

with respect to <_.
For elements x, y, z in a BCK-algebra;
(6) x,O=x,
(7) (x,y),z=(x,z),y.
If a BCK-algebra X has a greatest element with respect to <_, then

X is called to be bounded. The greatest element is denoted by 1.
If we define Nx by 1, x, then the following relations hold"
(8) N0-I, NI=0,
(9) Nx,y=Ny,x for any x, y.
Generalizing this notion, we arrive at the notion of an NB-algebra.
If a unary operation on a BCK-algebra X satisfies
(10) x,y= y,x

for any x, y e X, then X is called an NB-algebra.
Let X be an NB-algebra. (10) implies

x,0-- 0,x.

By (6), it follows that
(11) x=0,x.


