45. A Remark on Ribet's Theorem

By Hajime NAKAZATO

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1980)

Introduction. Let p be an odd prime, ζ_p be a primitive p-th root of unity and A be the p-Sylow subgroup of the ideal class group of $Q(\zeta_p)$. In [5], Ribet obtained a remarkable theorem on the structure of A as a Galois module by means of modular forms. We obtain a generalization of this Ribet's Theorem.

After this work had been finished, Prof. M. Koike kindly informed the auther that he had obtained a result on the existence of modular forms satisfying a certain congruence (Koike [8]). By using his decisive result, he obtained a desirable generalization of our theorem.

Notations. For a prime p, let \bar{Q}_p (resp. \bar{Q}) be an algebraic closure of Q_p (resp. Q) and fix them. We fix embeddings $\bar{Q} \rightarrow C$ and $\bar{Q} \rightarrow \bar{Q}_p$, through which we regard elements of \bar{Q} as elements of C or \bar{Q}_p . Let p be the prime of \bar{Q} , lying above p, corresponding to the fixed embedding $\bar{Q} \rightarrow \bar{Q}_p$. For a finite abelian group G, let $\hat{G} = \text{Hom}(G, \bar{Q}^{\times})$. For a positive integer n, let ζ_n be a primitive n-th root of unity in \bar{Q} .

§1. Put m=5,7 or 11. Let p be an odd prime satisfying $(p, m\varphi(m))=1$, where φ is the Euler's φ -function. We use the following notations: $k=Q(\cos(2\pi/m)), H=\operatorname{Gal}(k/Q), K=k(\zeta_p), G=\operatorname{Gal}(K/Q)$. Let ω be the Dirichlet character modulo p satisfying $\omega(a)\equiv a \mod p$ for all integers a, (a, p)=1. For $\varphi \in \hat{G}$, we identify φ with the primitive Dirichlet character attached to φ by class field theory. Then

 $\hat{G} = \{\psi\omega^i \mid \psi \in \hat{H}, i \mod (p-1)\}.$

We say that $\phi \in \hat{G}$ is imaginary if ϕ (complex conjugation) = -1. Let \hat{G}^- be the set of imaginary characters of G. For a positive integer i and for $\phi \in \hat{G}$, let $B_i(\phi)$ be the *i*-th generalized Bernoulli number associated with ϕ . For $\phi \in \hat{G}$, let Φ be the Q_p -irreducible character of a representation of G which has ϕ as a \bar{Q}_p -irreducible component. Then the orthogonal idempotent $e(\Phi)$ attached to Φ lies in the group ring $Z_p[G]$ since (p, [K:Q])=1. Let A be the p-Sylow subgroup of the ideal class group of K. We regard A as an additive group on which $Z_p[G]$ acts naturally.

Our main result is the following

Theorem 1. Let $\phi \in \hat{G}^-$. Then $B_1(\phi^{-1}) \equiv 0 \mod \mathfrak{p}$ if and only if $e(\Phi)A \neq 0$. In other words, let $\psi \in \hat{H}$ and let *i* be an even integer with $2 \leq i \leq p-1$. Then $B_i(\psi^{-1}) \equiv 0 \mod \mathfrak{p}$ if and only if $e(\Psi \omega^{1-i})A \neq 0$, where