43. On a Conjecture of S. Chowla and of S. Chowla and H. Walum. III

By Shigeru KANEMITSU^{*)} and Rudrabhatla SITA RAMA CHANDRA RAO^{**)}

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1980)

Let $P_r(v)$ denote the periodic Bernoulli polynomial of degree $r: P_r(v) = B_r(\{v\})$, where $B_r(v)$ is the r-th Bernoulli polynomial, $\{v\} = v$ -[v] being the fractional part of v ([v] is the greatest integer not exceeding v). For $a \in \mathbf{R}$ and $r \in N$ we put

(1)
$$G_{a,r}(x) = \sum_{n \leq \sqrt{x}} n^a P_r\left(\frac{x}{n}\right).$$

Then Chowla and Walum's conjecture is that there holds the estimate (2) $G_{a,r}(x) = O(x^{a/2+1/4+\epsilon})$

for every positive ε (cf. [3], [6]). The case r=1 is concerned with Dirichlet's divisor problem and presents a difficulty of the highest degree, and the case r=2 is called Chowla's conjecture [4], [6], which seems to be as deep as the divisor problem itself: For every positive ε and $\psi(v) = \{v\} - \frac{1}{2}$

(3)
$$G_{0,2}(x) = \sum_{n \leq \sqrt{x}} \left\{ \psi^2 \left(\frac{x}{n} \right) - \frac{1}{12} \right\} = O(x^{1/4+\epsilon}).$$

We have proved in [6] that a stronger version of (2) is true if $a \ge \frac{1}{2}$ and $r \ge 2$, namely we can claim that

(4)
$$G_{a,r}(x) = O(x^{a/2+1/4}), \quad G_{1/2,r}(x) = O(x^{1/2} \log x)$$

in the case specified above, while in case $0 \le a < \frac{1}{2}$ and $r \ge 2$ it holds that

(5)
$$G_{a,r}(x) = O(x^{(4a+3)/10})$$

In this note we shall give further developments in the investigation of the conjecture (2) in case $a < \frac{1}{2}$ and r=2, namely, we shall state a series representation for $G_{a,2}(x)$ similar to that for $G_{0,2}(x)$ obtained by Wigert [9], an average result for $-\frac{1}{2} < a < \frac{1}{2}$ analogous to that proved by Hardy [5] regarding Dirichlet's divisor problem, and finally

^{*)} Department of Mathematics, Faculty of Science, Kyushu University, Fukuoka, Japan.

^{**)} Department of Mathematics, Andhra University, Waltair, India.