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By means of the theory of the module of genus, S. Iyanaga and
Herbrand established the general principal ideal theorem in [4], [5]
and [6]. In this paper, we prove the theorem in an improved form by
an investigation of the structure of the idele groups [8].

1. Let k be an algebraic number field, m a divisor of k, which
may contain Archimedian primes, and K the ray class field modulo m
of k. Denote the conductor, the different and the module of genus of
K over k by [/, / and / respectively. Then as divisors of K,
we have

/=/./.
For a prime ideal of K, let e()=e(/) be the order of ramification
o over k, i.e.

*()[(k).O, and *()+(k).O,
and put

K/ "k" e()-l=K/" (")" e()-1.

Our improved orm of the general principal ideal theorem is
Theorem 1. The extension of an ideal a of into K belongs to

the principal ray class modulo if a is relatively prime to m. In
other words,

a.O=A.O
with A e Kx such that

A 1 mod /.
Here O is the maximal order of K.

In [4] and [6], the general principal ideal theorem was proved or
/ in place of/ o Theorem 1. Note that [/ divides m.

2. Let k] and K be the idele groups of k and K respectively,
and, k and K the Archimedian parts of k] and K] respectively. Let
k+ be the connected component o the unity of k, and k the closure
o k. k+ in k. For a prime ideal p o k, we denote the p-adic com-
pletion o k by k, the closure of the maximal order O in k, by 0, and
the unit group of O by 0. For an Archimedian prime p, the com-
pletion o at p is denoted by k,, and the connected component o
the unity of k by k+. For K, for a prime ideal o K, and for an
Archimedian prime of K, we define K+, K#, K, 0, 0, K and


