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1. Introduction. This paper continues the study of the classes
of polynomials in 2 variables given in Dunn and Lidl [3] and generalizes
these polynomials in two ways: They are generalized to polynomials
in k variables over an arbitrary field K ; secondly a parameter b ¢ K
is introduced for these polynomials, similar to the generalization of
the classical Chebyshev polynomials in one variable as in Dickson [1]
and Schur [14]. In analysis, the most important case, of course, is
K=C and b=1, which gives a natural generalization of the Chebyshev
polynomials, see Koornwinder [8]. However, there are also some in-
teresting algebraic and number theoretic properties in the more general
case of a field K and b € K, particularly for K=GF(q) the one-dimen-
sional polynomials have been studied extensively; see Lansch and
Noébauer [9], Fried [6] and Schur [14]. We use the same notation as
in [3] and obtain generating functions and recurrence relations for
generalized Chebyshev polynomials of the first and second kind in &
variables. In the present paper we are not considering any of the
analytic properties of the polynomials (for k=1 see Rivlin [13] or Szegd
[15]), such as partial differential operators or orthogonality. A dif-
ferent approach to give multi-dimensional extensions of Chebyshev
polynomials is introduced by Hays [7]. For some properties of special
functions in & variables and a bibliography including the earlier papers
on the subject we refer to [6]. We have organized the presentation
of the material into I and II, each consisting of two sections: §2 Defi-
nitions, § 3 Results in I and §4 Proofs, § 5 Outlook in II.

2. Definitions. Dickson [1] generalized the classical Chebyshev
polynomials in the following way. Let K be a field, r(z)=2*—22+b a
polynomial over K with roots # and v in a suitable extension field L of
K (e.g. if K=C then L=C, if K=GF(q) then L=GF(¢%). Then gen-
eralizations of the Chebyshev polynomials in one variable of the first
and second kind are given by (2.1) and (2.2), respectively.

2.1) P %y ; D)y=u"+0", forne Z
2.2) PY(x; b)=(u—v)"'(u ' —o"*), for n>0,
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