33. Ultradifferentiability of Solutions of Ordinary Differential Equations

By Hikosaburo Komatsu

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, m. j. a., April 12, 1980)

Let M_p , $p=0, 1, 2, \cdots$, be a sequence of positive numbers. An infinitely differentiable function f on an open set Ω in \mathbb{R}^n is said to be an *ultradifferentiable function of class* $\{M_p\}$ (resp. of class (M_p)) if for each compact set K in Ω there are constants h and C (resp. and for each h>0 there is a constant C) such that

 $\sup_{\alpha \in \mathcal{I}} |D^{\alpha}f(x)| \leq Ch^{|\alpha|} M_{|\alpha|}, \qquad |\alpha| = 0, 1, 2, \cdots.$

We assume that M_p satisfies the following conditions:

(1) $M_0 = M_1 = 1;$

(2)
$$(M_q/q!)^{1/(q-1)} \leq (M_p/p!)^{1/(p-1)}, \quad 2 \leq q \leq p,$$

and furthermore in case of class (M_p)

(3)
$$\left(\frac{M_p}{p!}\right)^2 \leq \left(\frac{M_{p-1}}{(p-1)!}\right) \left(\frac{M_{p+1}}{(p+1)!}\right), \quad p=1, 2, \cdots,$$

and (4)

$$M_p/(pM_{p-1}) \rightarrow \infty$$
 as $p \rightarrow \infty$.

We consider the initial value problem of ordinary differential equation

(5)
$$\begin{cases} \frac{dx}{dt} = f(t, x), \\ x(0) = y, \end{cases}$$

where $f(t, x) = (f_1, \dots, f_n)$ is an *n*-tuple of functions defined on $(-T, T) \times \Omega$ with a T > 0 and an open set Ω in \mathbb{R}^n . We assume the Lipschitz condition in x. Then for each relatively compact open subset Ω_1 of Ω there is a $0 < T_1 \leq T$ such that (5) has for each $y \in \Omega_1$ a unique solution x = x(t, y) on the interval $(-T_1, T_1)$.

Our main result is the following

Theorem. If all components of f(t, x) are ultradifferentiable functions of class $\{M_p\}$ (resp. of class (M_p)) on $(-T, T) \times \Omega$, then the components of the solution x(t, y) are also ultradifferentiable functions of class $\{M_p\}$ (resp. of class (M_p)) on $(-T_1, T_1) \times \Omega_1$.

Hereafter we denote by * either $\{M_p\}$ or (M_p) . The theorem is proved in two steps.

Proposition 1. If f(t, x) is ultradifferentiable of class * only in x but uniformly in t, then x(t, y) is ultradifferentiable of class * in y uniformly in t.