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1. Introduction. This note is. a continuation of our previous
note [2] and we shall use the terminologies in [2].

We shall consider various Dirichlet problems on the unit ball D
in the space E defined in [2, 3]. In particular we shall establish a
finite dimensional approximation theorem (Theorem 4.1) of Dirichlet
solutions on D which may be regarded as a reformulation of L6vy’s
"la m6thode du passage du fini l’infini" (see [1, p. 307]).

2. Spherical Brownian motion (continued from [2, 4]). The
standard Gaussian white noise p defined in [2, 2] can be easily ex-
tended to the measurable space (S, ) as follows.

/(A) P(B(1, ) e A) for A e
where {B(t)} is the Brownian motion given in [2, 3].

Our first assertion is
Theorem 2.1. Let f() be a bounded, cylindrically measurable,

01-continuous function on S. Then we have

lira Ne[f()]= f()(d) for S,

and the white noise [ is the unique invariant probability measure of
the spherical Brownian motion {}.

Consequently we have the following contraction semi-group
{T t >0} ([5, Chap. IX]) on the complex Hilbert space L(S,/):

Ttf() =E*[f(t)] (t/>0) for f e L(S,
Now we have

Theorem 2.2. The infinitesimal generator of {Tt} i8 self-ad]oint
operator with the pure-point spectrum {-n/2 n=O, 1,2,...} and the
eigenspace of the eigenvalue --n/2 is spanned by { IKl=n}, (see [2,
2] for definitions). This infinitesimal generator agrees with the in-

finite dimensional Laplacian operator of Y. Umemura (see [4]), up to
constant 1/2.

Next we shall see that the spherical Brownian motion is homo-
geneous under the group G of linear bimeasurable bijections g of E
to E satisfying

/(g.)=/(.) and ]lgxl]=llxll forxeE.
Proposition 2.3. For g e G and A e , it holds that


