Non-Immersion and Non-Embedding Theorems for Complex Grassmann Manifolds^{*}

By Tamio SUGAWARA

Department of Mathematics, Kyushu University

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 13, 1979)

Introduction. The purpose of the present paper is to prove nonimmersion and non-embedding theorems for the complex Grassmann manifolds $G_{k,n-k} = U(n)/U(k) \times U(n-k)$ by making use of an index theorem due to Atiyah-Hirzebruch [1]. We denote by $X \subseteq \mathbb{R}^q$ (or $X \subset \mathbb{R}^q$) the existence of immersion (or embedding) of a differentiable manifold X into the Euclidean space \mathbb{R}^q respectively. Let $\alpha(q)$ denote the number of 1's in the dyadic expansion of an integer q. Then our results are stated as follows:

Main Theorem. Let 2m = 2k(n-k) be the dimension of $G_{k,n-k}$ and let $r = \sum_{j=1}^{k} (\alpha(n-j) - \alpha(j-1))$. Then,

- (a) (i) $G_{k,n-k} \not\subset R^{4m-2r}$, (ii) $G_{k,n-k} \not\subseteq R^{4m-2r-1}$.
- (b) If n is odd, then m = k(n-k) is even and
- (i) if $r \equiv 3 \pmod{4}$ then $G_{k,n-k} \not\subset R^{4m-2r+2}$,
- (ii) if $r \equiv 2$ or 3 (mod 4) then $G_{k,n-k} \not\subseteq R^{4m-2r+1}$, if $r \equiv 1 \pmod{4}$ then $G_{k,n-k} \not\subseteq R^{4m-2r}$.

These are generalizations of results for complex projective spaces investigated by Atiyah-Hirzebruch [1], Sanderson-Schwarzenberger [5] and Mayer [4] and of the results for some complex Grassmann manifolds obtained by Sugawara [6].

This paper is arranged as follows. In § 1, the index theorem for immersion and embedding due to Atiyah-Herzebruch [1] and Mayer [4] are recalled. § 2 is devoted to show the computability of some Todd genus for complex homogeneous spaces G/U. We prove Main Theorem in § 3 and exhibit Table I of r for some n and k.

The author wishes to express his hearty gratitude to Professor M. F. Atiyah for enlightening discussions.

§ 1. Index theorems. Let X^{2m} be a closed connected oriented differentiable manifold of 2m dimension. Let $\{\hat{A}_j(p_1, p_2, \dots, p_j)\}$ be the multiplicative sequence of polynomials [3, § 1] with $(z/2)/\sinh(z/2)$ as characteristic power series and let $\hat{\mathcal{A}}(X)$ be the cohomology class $\sum_{j=0}^{\lfloor m/2 \rfloor} A_j(p_1(\xi), \dots, p_j(\xi))$ of the tangent bundle $\xi = \tau(X)$ of X. For any $z \in H^*(X, Q)$ and $d \in H^2(X, Q)$, we define $\hat{A}(X, d, z) = \{ze^d \hat{\mathcal{A}}(X)\}[X]$. Let

^{*)} Dedicated to Professor Atuo Komatu for his 70th birthday.