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We deal with the intermediate propositional logics. We suppose
familiarity with the intermediate logics. For those not mentioned
here explicitly, we refer to our Survey [1].

The so-called Peirce’s axiom P is abaa, where parentheses
are omitted by assuming the association from the left. This axiom
was modified by Nagata into a sequence of axioms as follows"

Definition 1. Pl(a0, al)=aa0ala,
P(ao, ..., a)=anDP_l(ao, ".,a_)DaDa.

This sequence is often used in the study of intermediate logics as
a strong and convenient tool. The evaluation of axioms from this
sequence is sometimes treated in literatures but the treatment seems
not to be complete.

Here we give a complete treatment of the evaluatioa and its
application for the axiomatization of infinite models.

As models for intermediate propositional logics, we take up the
so-called Kripke model, which was. modified and renamed as POS
model by Ono (see Ono [2]). Further, we treat only finite models.

Let M be a POS model (usually, with the minimum elemeat). We
define the condition C(W, a) for the M-valuation W and the element a

of M as follows"
Condition.

C(W, )" W(a,a)=f and, for any >, W(a, )=t.
And there exists >o such that W(b, fl)=f.

The main result of this note is the following

Theorem 2. W(P, a)=fif and only if there exists o> such that
C(W, 0).

We prove the theorem through the two lemmas as below.
Lemma 3. C(W, d0) implies W(P, do)=fi
Proof. By the hypothesis, we have W(a, )-t or any /3>0.

Further, there exists /30 such that W(b,/3)=fi Hence we hve
W(a b, 0) =fl So we have, for any ,_0, W(a b, ) f or W(a, )
=t. Hence we have W(aba, ao)-t. Finally, from W(aba, ao)


