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1. Introduction. The study in this note is a continuation of
our previous paper [6]. Let tO be a bounded domain in R (n_>2) with
C boundary ,. Let p(x) be a smooth function on and v be the exterior
unit normal vector at x e ,. For any sufficiently small _>0, let/2, be
the bounded domain whose boundary ,, is defined by ,,={x+ep(x)v
x e ,}. Let U.(x, y, t) be the Green kernel of the heat equation ill 9.
with the Dirichlet boundary condition on ,,. Let T(t; ) be the trace
of U. on 2.. When t tends to zero, we have the asymptotic expansion

T(t; e)Y, a_(,)(/t)-/ which was given by Minakshisundarum-
j=O

Pleijel [5]. In [6], the author gave the asymptotic expansion ,T(t)

b_(/)-/ near t--0 of the variational term T(t)of the trace
j=0

which was defined by 6T(t)= lim -(T(t )-- T(t 0)). We proposed

the following problem (E) in [6] and gave an affirmative answer for
the case k=0.

Problem (E). Can we say that the following is valid?
(E) b_=lim s-(an_(s)--a_(O)).

*-*0

In this paper, we shall prove the following
Theorem 1. (E) is valid for any n >_2.
The aims of this note are verification of Theorem 1 and an applica-

tion of Theorem 1 to some eigenvalue problem which will be stated in
this section.

We now mention the following
Problem (Q). Characterize the bounded domain [2 with smooth

boundary having the following property.

(I) For any p(z) e C(") such that [ p(z)da,=O, we have 2=0,
d

where is the variational term of the first eigenvalue 0 of the
Laplacian with the Dirichlet condition. Here da, denotes the surface
element of at z.

The condition [ p(z)da=O means that the perturbation of domain

we considered preserves the volume of domains infinitesimally. We


