50. Invariants of Reflection Groups in Positive Characteristics

By Haruhisa NAKAJIMA

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1979)

Let k be a field of characteristic p>0. Let V be a vector space over the field k and k[V] be the symmetric algebra of V. Let G be a finite subgroup of GL(V) with p||G|. Then G can be regarded as a subgroup of the automorphism group of k[V]. In [5], we classified irreducible groups G such that the invariant subrings $k[V]^{a}$ are polynomial rings under certain conditions. For a reflection group G, it is well known (e.g. [1]) that $k[V]^{a}$ is a unique factorization domain, but it has not been known whether $k[V]^{a}$ is a Macaulay ring. In this note we give some examples of reflection groups G such that $k[V]^{a}$ are not Macaulay rings.

Suppose that p>2 and that n is an integer with $p|n, n\geq 5$. Let $E=\bigoplus_{i=1}^{n} kT_i, V=\bigoplus_{i=2}^{n} k(T_i-T_i)$ and $V'=V/k\sum_{i=1}^{n} T_i$ be vector spaces over k. The symmetric group S_n acts on $\{T_1, \dots, T_n\}$ as permutations. Then the k-spaces V and V' are naturally regarded as S_n -faithful kS_n -modules. The group S_n is generated by reflections in GL(V) and GL(V') respectively. It is proved in [5] that $k[V]^{S_n}$ and $k[V']^{S_n}$ are not polynomial rings. The purpose of this note is to show the following stronger result:

Theorem. Suppose that $p \parallel n$ and $p \geq 7$. Then $k[V]^{s_n}$ and $k[V']^{s_n}$ are not Macaulay rings.

Proof. Set $X_i = T_i - T_1$ $(2 \le i \le n)$ and $u = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 1 & \cdots & 1 \\ 1 & 1 & 2 & \cdots & 1 \\ & \ddots & \ddots & & \\ 1 & 1 & 1 & \cdots & 2 \end{bmatrix} \in GL_{n-1}(k).$

Put $[Y_2, \dots, Y_n] = u^i[X_2, \dots, X_n]$ and denote by \overline{Y}_i $(3 \le i \le n)$ the canonical images of Y_i in V'. Let

 $a = {}^{t}[1, 2, \dots, p-1, 0, 1, \dots, p-1, \dots, 0, 1, \dots, p-1] \in k^{n-1}$ and choose the element $a' = {}^{t}[a'_{3}, \dots, a'_{n}] \in k^{n-2}$ such that $ua = \begin{bmatrix} 0\\a' \end{bmatrix}$. Put $W_{2} = X_{2} - 1, W_{3} = X_{3} - 2, \dots, W_{p} = X_{p} - (p-1), W_{p+1} = X_{p+1},$ $W_{p+2} = X_{p+2} - 1, \dots, W_{2p} = X_{2p} - (p-1), \dots, W_{n-p+1} = X_{n-p+1},$ $W_{n-p+2} = X_{n-p+2} - 1, \dots, W_{n} = X_{n} - (p-1).$

Let *M* be the maximal ideal of k[V] generated by the set $\{W_2, \dots, W_n\}$