70. Remarks on the Existence of Finite Invariant Measures for Groups of Measurable Transformations

By Kôkichi SAKAI

Department of Mathematics, Kagoshima University (Communicated by Kôsaku Yosida, M. J. A., Nov. 13, 1978)

0. Introduction. Throughout this note let (X, \mathfrak{B}, m) be a finite measure space and let G be an infinite group of invertible bi-measurable non-singular transformations of X onto itself. A measure μ on (X, \mathfrak{B}) is called *G*-invariant if $\mu(gE) = \mu(E)$ for all $g \in G$ and $E \in \mathfrak{B}$. By A. Hajian and Y. Ito [1] it is proved that there exists a finite *G*invariant measure on (X, \mathfrak{B}) equivalent to m if and only if in \mathfrak{B} there does not exist any weakly *G*-wandering set of positive *m*-measure. Making use of the elegant result, in this note, we shall give some necessary and sufficient conditions for the existence of a finite *G*invariant measure on (X, \mathfrak{B}) equivalent to m. Our results have been shown by Hopf [3], Kubokawa [4], Hajian and Kakutani [2] for the case when *G* is a cyclic group.

1. The main theorem. To state our results, we begin with some definitions. By N we denote the set of all positive integers. In what follows let A, B, A_i, B_i $(i \in N)$ and W be subsets of X in \mathfrak{B} .

Definition 1. A is equivalent to B under G, denoted by $A \sim B$, if A and B can be expressed as countable disjoint union $A = \bigcup_{i=1}^{\infty} A_i$ and $B = \bigcup_{i=1}^{\infty} B_i$ such that there exists a sequence $\{g_i; i \in N\}$ in G satisfying $g_i A_i = B_i$ for all $i \in N$.

Definition 2. A is G-bounded if m(A-B)=0 for any $B \subset A$ with $B \sim A$.

Definition 3. (X, \mathfrak{B}, m) is G-compact if for any $\varepsilon > 0$ there corresponds a $\delta > 0$ such that $m(A) < \delta$ and $B \sim A$ imply $m(B) < \varepsilon$.

Definition 4. W is weakly G-wandering if there exists a sequence $\{g_i; i \in N\}$ in G such that $g_i W \cap g_j W = \emptyset$ for all $i, j \in N$ with $i \neq j$.

Definition 5. A family Λ of measures on (X, \mathfrak{B}) is equi-uniformly absolutely continuous with respect to m if for any $\varepsilon > 0$ there corresponds a $\delta > 0$ such that $m(B) < \delta$ implies $\lambda(B) < \varepsilon$ for all $\lambda \in \Lambda$.

For every $g \in G$ let m_g be the measure on (X, \mathfrak{B}) defined by $m_g(E) = m(gE)$ for any $E \in \mathfrak{B}$. Now we consider the following conditions:

(0) There exists a finite G-invariant measure μ on (X, \mathfrak{B}) which is equivalent to m.

(1) (X, \mathfrak{B}, m) is G-compact.

(2) X is G-bounded.