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1. Introduction. T. Kato [1, 2] studied the Cauchy problem for
linear "hyperbolic" evolution equations in a general Banach space X"
(1.1) (du/dt)-FA(t)u(t)=O, u(s)--x, O_s_t_T(c,
where --A() is the generator of a (C0)-semigroup in X for each t. He
proved the basic existence theorem [1; Theorem 4.1] by the Cauchy’s
method analogous to ordinary differential equations. He posed a ques-
tion whether it is possible or not to prove the theorem by the osida
approximation method. In this paper we will answer the question
affirmatively under the assumptions of Kato [1; Theorem 4.1]. In 2
we treat the "stable" case about the family {A(t)} we study some prop-
erties of the Yosida approximation, then in 3 we prove the existence
theorem. Finally in 4 we give some comments how our arguments
are modified in the case of "quasi-stability" [2].

2. Theorem. We follow Kato [1] in notation and terminology.
Let X and Y be real Banach spaces with Y densely and continuously
embedded in X. We assume that --A($) is the generator of a (C0)-
semigroup on X. Further assume

( i ) {A(t)} is stable; i.e., there are constantn M,/ such that"
II(A(t) + )-... (A(t) +)- gM. (--fl)-

for 2fl and Ogtg... gtgT, k--1,2,....
(ii) Y is A(t)-admissible or each t; that is, the semigroup gen-

erated by --A(t) leaves Y invariant and forms a (C0)-semigroup on Y.
And if A(t) is the part of A(t) in Y, then (A(t)} is stable with some
constants/1, [1, p. 242].

(iii) YD(A(t)) for each t and A(t) is norm continuous from [0, T]
into B(Y, X).

Hereafter we assume fl,0 for simplicity.
A amily {U(t,s);O<_sgt<_T} is called the evolution operator for

{A(t)} if it satisfies the ollowing conditions"
(a) U(t, s) is strongly continuous (X) in s, t and, U(t, t)-I and

U(t, s)ll_< i. exp [/(t-- s)].
(b) U(t, r)= U(t, s)U(s, r),
(c) (/t)+ U(t, s)y I-- A(s)y or y e Y, 0

_
s< T.

(d) (/s)U(t, s)y=U(t, s)A(s)y for y e Y, O_s<_t_T.


