2. Global Solutions of the Boltzmann Equation in a Bounded Convex Domain

By Yasushi SHIZUTA*) and Kiyoshi ASANO**)

(Communicated by Kôsaku YOSIDA, M.J.A., March 12, 1977)

1. Introduction. We consider the Boltzmann equation
(1)
$$\frac{\partial F}{\partial t} + \sum_{i=1}^{3} \xi_{i} \frac{\partial F}{\partial x_{i}} = J(F, F),$$

which describes the change in time of the distribution function of the arguments space x and velocity ξ . Here J(F, F) is the collision integral [1]. The equilibrium solution of (1) is $F = \omega$, where

$$\omega(\xi) = \frac{1}{(2\pi)^{3/2}} \exp\left(-\frac{1}{2}|\xi|^2\right)$$

As we are interested in solutions of (1) which are close to $F=\omega$, we introduce $f(x,\xi)$ by

(2) $F = \omega + \omega^{1/2} f$. Then the equation satisfied by f is

(3)
$$\frac{\partial f}{\partial t} = Bf + \Lambda \Gamma(f, f).$$

The explicit form of the operator B is

(4)
$$(Bf)(x,\xi) = -\sum_{i=1}^{3} \xi_{i} \frac{\partial f(x,\xi)}{\partial x_{i}} - \nu(\xi) f(x,\xi) + \int_{\mathbb{R}^{3}} K(\xi,\eta) f(x,\eta) d\eta,$$

where $\nu(\xi)$, the collision frequency, is a certain unbounded positive function of ξ and $K(\xi, \eta)$, the collision kernel, is a symmetric function of ξ and η . The operator Λ is the multiplication operator by $\nu(\xi)$ and $\Gamma(f, f)$ denotes the quadratic term. Note that $J(\omega, \omega)=0$. We shall use Grad's estimates [1], [2] for $\nu(\xi)$, $K(\xi, \eta)$ and $\Gamma(f, f)$ in computations. This means that the potential is a hard potential in the sense of Grad and that the angular cut-off assumption is made for the differential cross section. A typical example satisfying these conditions is a gas of rigid spheres. The initial value problems for the Boltzmann equation on the torus and on the entire space have been studied earlier in [4] and [5], respectively. In this note, we treat the initial boundary value problem for the case of specular reflection boundary condition. Our

^{*)} Department of Mathematics, Nara Women's University, Nara 630, Japan.

^{**)} Institute of Mathematics, Yoshida College, Kyoto University, Kyoto 606, Japan.