378 [Vol. 21,

57. A note on generalized convex functions.

By Sitiro HANAI.

Nagaoka Technical College.

(Comm. by S. KAKEYA, M.I.A., July 12, 1945.)

§ 1. We are concerned with real finite functions f(x) defined on a closed interval $a \le x \le b$. E. F. Beckenbach¹⁾ has given a generalization of the notion of a convex function as follows.

Let $F(x; a, \beta)$ be a two-parameter family of real finite functions defined on $a \le x \le b$ and satisfying the following conditions:

- (1) each $F(x; \alpha, \beta)$ is a continuous function of x;
- (2) there is a unique member of the family which, at arbitrary x_1, x_2 satisfying $a \le x_1 < x_2 \le b$, takes on arbitrary values y_1, y_2 .

The members of the family $F(x; \alpha, \beta)$ are denoted simply by F(x), individual members being distinguished by subscripts. In particular, $F_{ij}(x)$ denotes the member satisfying $F_{ij}(x_i) = f(x_i)$, $F_{ij}(x_j) = f(x_i)$, $(\alpha \le x_i < x_j \le b)$.

We call a function f(x) to be convex in Beckenbach's sense if

$$f(x) \leq F_{12}(x)$$

for all x_1, x_2, x , with $a \leq x_1 < x < x_2 \leq b$.

Now let the family $F(x; \alpha, \beta)$ satisfy the following condition (3) in addition to (1) and (2):

(3) let F(x), F'(x) be the members of the family passing through arbitrary points (x_1, y_1) , (x_2, y_2) ; (x_1, y_1') , (x_2, y_2') respectively, then, the member $F_{\lambda}(x)(\lambda > 0)$ which passes through $(x_1, \lambda y_1)$, $(x_2, \lambda y_2)$ is not less than $\lambda F(x)$ for $a \le x_1 < x < x_2 \le b$, and the member passing through $(x_1, y_1 + y_1')$, $(x_2, y_2 + y_2')$ is not less than F(x) + F'(x) for $a \le x_1 < x < x_2 \le b$.

Definition. A function f(x) is called a generalized convex function if the family $F(x; a, \beta)$ satisfies the condition (1), (2), and (3), and $f(x) \le F_{12}(x)$ for all x_1, x_2, x , with $a \le x_1 < x < x_2 \le b$.

For instance, (a) when $F(x; \alpha, \beta) \equiv \alpha x + \beta$, then $F(x; \alpha, \beta)$ satisfies the conditions (1), (2), and (3) and therefore the convex function in the usual sense is a generalized convex function, (b) when $F(x; \alpha, \beta) \equiv \alpha \sin \rho x + \beta \cos \rho x$ where ρ is a constant and $b-a < \frac{\pi}{\rho}$, then $F(x; \alpha, \beta)$ satisfies (1), (2), and (3) and

¹⁾ E. F. Beckenbach; Generalized convex functions, Bull. Amer. Math. Soc. Vol. 43 (1937), 363-371.