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(Comm. by S. KAKEYA, M.I.A., Feb. 12, 1946.)

In his note "Stochastic Integral ,,x) the author has discussed an integral

of the type )’(r, <o)d g(r, w), where o is a variable taking values in a pro-

bability field (9, P) and g(t, o) is a normalized brownian motion on (9, P).
This note is devoted to the investigation of a stochastic integral equation:

which is closely related to the researches of Markoff process by many

authors, especially by S. Bernstein,2) A. Kolmogoroff,3) and W. Feller.4)

Theorem. Let a (t, x) and b (t, x) be continuous in (t, x) and satisfy
(2) la(t,x)-a(t,y)lAIx-yl, (3)]b(t,x)--b(t,y)lBlx--yl, where

0 t 1 and < x, y < . Then the integral equation (1) has one and
only one continuous (in with P-measure 1) solution.

Proof. Firstly we shall find a solution by the method of successive
approximation. We define xk(t, oo) for k 0, 1, 2 as ollows,

(4) xo (t, o) =_ ,

the pssibility of these definitions can be verified reeurively if we make use

of the properties of the stochastic integral shown in S.I..
By (5) we have, for k 0, 1, 2,

(6)

I-fot(b (v, (v, w)) b (r, (v, w))) d. g

Since a (t, x)’and b (t, x) are continuous, a (t, c) and b (t, c)] are bounded
in 0 t 1 by a finite upper bound, say M. Then we have
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