36. A Theorem on the Poisson Integral.

By Makoto OHTSUKA.

Mathematical Institute, Tokyo Imperial University.

(Comm. by S. KAKEYA, M. I. A., June 12, 1946.)

1. We will prove the following theorem,

Theorem. Let u(z) ($z = re^{i\theta}$) be a harmonic function in the unit circle |z| < 1 and be expressed by a Poisson integral :

$$u(z) = \frac{1}{2\pi} \int_{0}^{2\pi} u(e^{i\varphi}) \frac{1-r^2}{1-2r\cos(\theta-\varphi)+r^2} \, d\varphi, \qquad (1)$$

where $u(e^{i\theta})$ is integrable in Lebesgue's sense, and G be any simply connected domain in |z| < 1.

When we map G conformally on the unit circle |x| < 1, u(z) becomes a harmonic function v(x) in |x| < 1.

Then v(x) can be expressed by a Poisson integral of the form (1) in |x| < 1.

Prof. Tsuji proved this theorem in the special case in which G is bounded by a finite number of analytic curves C_i (i = 1, ..., k) in |z| < 1 and a certain number of circular arcs on the unit circle |z| = 1, and the angles between any two adjoining C_i are different from zero and the angles which C_i makes with the unit circle are different from zero and π , so that C_i does not touch the unit circle.⁽¹⁾

2. Proof. We write u(z) in the form:

$$u(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{2} \{ | u(e^{i\varphi}) | + u(e^{i\varphi}) \} \frac{1 - r^{2}}{1 - 2r\cos(\theta - \varphi) + r^{2}} d\varphi - \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{2} \{ | u(e^{i\varphi}) | - u(e^{i\varphi}) \} \frac{1 - r^{2}}{1 - 2r\cos(\theta - \varphi) + r^{2}} d\varphi.$$
(2)

Since both $\{ | u(e^{i\theta}) | + u(e^{i\theta}) \}$ and $\{ | u(e^{i\theta}) | - u(e^{i\theta}) \}$ are positive and integrable in Lebesgue's sense, u(z) can be expressed by a difference of two positive harmonic functions of the form (1), so that to prove our theorem, it suffices to prove for a positive harmonic function of the form (1), where $u(e^{i\varphi}) \ge 0$.

We take a sequence of positive numbers, such that

$$0 < M_1 < M_2 < \cdots < M_n \to \infty$$

and define $u_n(e^{i\theta})$ as follows;

$u_n(e^{i\theta}) = u(e^{i\theta})$	when	$M_n \geq u(e^{i\theta}),$
$u_n(e^{i\theta}) = M_n$	when	$u\left(e^{i heta} ight) >M_{n}$,

M. Tsuji, Theorems concerning Poisson integrals. Jap. Journ. Math. 7 (1930), 227 --253.