No. 11.]

62. Note on Irreducible Rings.

By Tadasi NAKAYAMA.

Department of Mathematics, Nagoya Imperial University.

(Comm. by T. TAKAGI, M. I. A., Dec. 12, 1946.)

The purpose of the present work⁽¹⁾ is to extend, partly, the well-known beautiful theory of simple algebras and their relationship with subalgebras⁽²⁾ to irreducible rings; A ring we call *irreducible*, or *right-irreducible* to be precise, when it has a faithful irreducible right-module. More generally we call a ring (*right-)semi-irreducible*, when it has a faithful completely reducible right-module.⁽³⁾ If an (irreducible) ring possesses a faithful irreducible right-ideal, then we speak of a (*right-) ideal-irreducible* ring. A *closed* (*right-) irreducible* ring is defined as a ring \Re possessing a faithful irreducible right-module \Re with \Re -endomorphism ring \Re *, such that every \Re *-endomorphism of \Re is induced by \Re . Similarly defined are (*right-) ideal-semi-irreducible* and *closed* (*right-) irreducible* rings.

Let \Re be a (right-) ideal-semi-irreducible ring, \mathfrak{r}_1 a faithful completely reducible right-ideal in \Re . Take one representative from each class of mutually isomorphic irreducible right subideals of \mathfrak{r}_1 . The (restricted direct) sum \mathfrak{r}_0 of the tatality of such representatives is also a faithful completely reducible right ideal. Now we have:

Every faithful right-module of \Re possesses a submodule isomorphic to \mathfrak{r}_0 . In particular, \mathfrak{r}_0 is a minimal faithful right ideal in \Re . Every non-zero right-ideal of \Re contains an irreducible right subideal, which is isomorphic with an irreducible component of \mathfrak{r}_0 . A right-ideal of \Re is irreducible if and only if it is generated by a primitive idempotent element. The sum of all (irreducible) right-ideals isomorphic with an irreducible right-ideal is an irreducible two-sided ideal, and every irreducible two-sided ideal is obtained in such manner. Every non-zero two-sided ideal contains an irreducible two-sided ideal. The (restricted direct) sum of all irreducible two-sided ideal, that is, the largest completely reducible two-sided ideal in \Re , is the smallest right-(as well as two-

⁽¹⁾ A fuller account is given in a forthcoming joint paper by G. Azumaya and the writer.

⁽²⁾ Of R. Brauer, E. Noether and A. A. Albert, among others.

⁽³⁾ For C. Chevalley's principal theorem of semi-irreducible ring, in the effect to embed a semi-irreducible ring densely in a closed one (in the sense of the weak topology of mappings in the (discrete) module, see T. Nakayama, Ueber einfache distributive Systeme unendlicher Ränge, these Proc. 20 (1944), Anhang.