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Let be a Lie algebra over the field of complex numbers, )and
)’ maximal nilpotent subalgebras of containing regular elements.
E. Cartan has shown for semi-simple that there exists an inner
autornorphism A such that 8’--A)). In this note we shall show that
this theorem is valid or any, not necessarily semi-simple, Lie algebra.
From this we see easily that the decomposition o a Lie algebra into
the eigen-spaces of a maximal nilpotent subalgebra containing a regul-
ar element (Cartan decomposition) is unique up to inner autornor-
phisrns of 9.

Let (q be the Lie group which corresponds to . To every ele-
ment a of g corresponds a one-parameter subgroup g(t) of (q and a
is the tangent vector at the unit element to the differentiable curve
g(t). Extending to general Lie groups a notion familiar for matrices,
we shgll denote by exp ta this one-parameter subgroup t) and by
exp a the point of parameter 1 on this curve. Further exp means
the (local) subgroup o ( which corresponds to a subalgebra g of t.
I we transform the elements of the group exp ta by a fixed element
g, we obtain a new one-parameter subgroup exp ta’; the mapping
a-Aa=a’ is an inner autornorphisrn of generated by g. The
mapping x-->D,x--[a, ], with a fixed, is a linear operation in o, which
is called inner derivation of g. Suppose that g--exp a and g is suf-
ficiently near to the unit dement, then A--exp D,. Let us decompose
by A into eigen-spaces"
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where ,, , are the eigen-spaces for the characteristic roots, 1,
p, of A. Here , is a subalgebra of ).

LemmaL The systems u-gexp , u, where u runs over a neigh-
bourhood of the unit element, contain a neighbourhood of the element
gin (.

Proof. Let a, a, a be a basis of the subalgebra and
a,/, a a basis of ++ Then the (local) subgroup exp
is composed of all elements of the forms exp(ta, +... + ta), where the
parameters t are sufficiently near to zero. To prove our Lemma, it
is sufficient to show that the set of elements
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