12. On the Cartan Decomposition of a Lie Algebra.

By Yozô MASTUSHIMA.

Mathematical Institute, Nagoya Imperial University. (Comm. by T. TAKAGI, M.I.A., May 12, 1947.)

Let \mathfrak{L} be a Lie algebra over the field of complex numbers, \mathfrak{H} and \mathfrak{H}' maximal nilpotent subalgebras of \mathfrak{L} containing regular elements. E. Cartan has shown for semi-simple \mathfrak{L} that there exists an inner automorphism A such that $\mathfrak{H}' = A \mathfrak{H}^{1}$. In this note we shall show that this theorem is valid for any, not necessarily semi-simple, Lie algebra. From this we see easily that the decomposition of a Lie algebra into the eigen-spaces of a maximal nilpotent subalgebra containing a regular element (Cartan decomposition) is unique up to inner automorphisms of \mathfrak{L} .

Let (6) be the Lie group which corresponds to \mathfrak{L} . To every element a of \mathfrak{L} corresponds a one-parameter subgroup g(t) of (6) and a is the tangent vector at the unit element to the differentiable curve g(t). Extending to general Lie groups a notion familiar for matrices, we shall denote by *exp ta* this one-parameter subgroup g(t) and by *exp a* the point of parameter 1 on this curve. Further *exp* \mathfrak{H} means the (local) subgroup of (6) which corresponds to a subalgebra \mathfrak{H} of \mathfrak{L} . If we transform the elements of the group *exp ta* by a fixed element g, we obtain a new one-parameter subgroup exp ta'; the mapping $a \rightarrow A_{\mathfrak{f}}a = a'$ is an inner automorphism of \mathfrak{L} generated by g. The mapping $x \rightarrow D_a x = [a, x]$, with a fixed, is a linear operation in \mathfrak{L} , which is called inner derivation of \mathfrak{L} . Suppose that g = exp a and g is sufficiently near to the unit element, then $A_g = exp D_a$. Let us decompose \mathfrak{L} by $A_{\mathfrak{c}}$ into eigen-spaces :

$$\mathfrak{L} = \mathfrak{L}_1 + \mathfrak{L}_{\rho} + \mathfrak{L}_{\sigma} + \dots$$

where $\mathfrak{L}_1, \mathfrak{L}_{\rho}, \ldots$ are the eigen-spaces for the characteristic roots, 1, ρ, \ldots of A_g . Here \mathfrak{L}_1 is a subalgebra of $\mathfrak{L}^{\mathfrak{D}}$.

Lemma³⁾. The systems $u^{-1}g \exp \mathfrak{L}_1 u$, where u runs over a neighbourhood of the unit element, contain a neighbourhood of the element g in \mathfrak{G} .

Proof. Let a_1, a_2, \ldots, a_s be a basis of the subalgebra \mathfrak{L}_1 and a_{s+1}, \ldots, a_r a basis of $\mathfrak{L}_p + \mathfrak{L}_{\sigma} + \ldots$. Then the (local) subgroup $exp \mathfrak{L}_1$ is composed of all elements of the forms $exp(t_1a_1 + \ldots + t_sa_s)$, where the parameters t_i are sufficiently near to zero. To prove our Lemma, it is sufficient to show that the set of elements

¹⁾ E. Cartain, Le principe de dualité et la théorie des groupes simples et semesimples (Bull. Sc. math. t. 49, 1925). Gantmacher has given a proof in a somewhat general form. F. Gantmacher, Canonical representations of automorphisms of a complex semi-simple Lie group, (Recueil mathématique, 5(47), 1939).

²⁾ See Gantmacher, l. c. P. 107: If g is sufficiently near to the unit element then $\mathfrak{Q}_1 \neq 0$.

³⁾ Cf. Gantmacher, l. c. P. 113.