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I. The polnts of intersection of tangents drawn from the imaginary crcular
pons at infinity to an algebraic curve of the -th class are called the Foci of

the algebraic curves. As is known there are focL Now we determine the

locus of loci of algebra|c curves in the pencil of algebraic curves of the -th
class, and make the extenfion of it in spe.. Let us prove the dual theorem.

Theorem 1. Supposing the points P, to be intersections of variable alge-
braic curve in the pencil of algebra[c curves of the. n-th order with tim two given
straight lines g, h, the straight, line FO e;/elops an algebraic curve of the
(2n--1)-th class, which has the straight lin g, h as (n-1)-ple tangents.

Proof. In proving the above theorem, let us tmsume the equation of the
pencil of algebraic curves of the n-th order to be

X A,x*ySz=O,

and the straight lines g, h
g; z::O,
h; y=O,

then the coordinates of the point P (x,, y., O) are given by

Aoxy :0,

and the coordinates of the point Q (x/, O, z/) are given by

X Aox:O.
+k=

Let us us line coordinates u, v, w of the line F, then we have

ux, +vy, =0,

x,+w =0.

ltence

Z Ao(-1)*v*u=O,

Z Ao,.(-- 1)*w*u O.

Eilminating ;,, from both equations, we get


