On Riemannian Spaces Admitting a Family of Totally Umbilical Hypersurfaces. I.

By Tyuzi ADATI.

(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1951.)

§ 1. Let V_n be an *n*-dimensional Riemannian space with the fundamental tensor $g_{\lambda\mu}$ $(\lambda,\mu,\nu,\ldots=1,\ 2,\ldots,n)$ and assume that there exists a family of totally umbilical hypersurfaces

$$\sigma(x^{\lambda}) = \text{const.}.$$

If we denote the parametric representation of its hypersurfaces by $x^{\lambda} = x^{\lambda}(x^{i}) \ (i,j,k,\ldots = 1,2,\ldots,n-1),$

then from (1.1) we have by differentiation with respect to x^i

$$\sigma_{\lambda}B_{i}^{\lambda}=0$$

where

$$\sigma_{\lambda} = \frac{\partial \sigma}{\partial x^{\lambda}}, \ B_i^{\lambda} = \frac{\partial x^{\lambda}}{\partial x^i}.$$
 Furthermore, differentiating

with respect to x^{j} , we have

$$\sigma_{\lambda;\mu} B_i^{\lambda} B_j^{\mu} + \sigma_{\lambda} H_{ij}^{\lambda} = 0,$$

where H_{ij}^{λ} is an Euler-Schouten's curvature tensor. If we denote the fundamental tensor and normals of the hypersurfaces by g_{ij} and B^{λ} respectively, we have, because of $H_{ij}^{\lambda} = Hg_{ij}B^{\lambda}$,

$$\sigma_{\lambda:u} B_i^{\lambda} B_j^{u} + H \sigma_{\lambda} B^{\lambda} g_{ij} = 0,$$

from which follows

$$(\sigma_{\lambda;\mu} + H\sigma_{\nu} B^{\nu} g_{\lambda\mu}) B_{j}^{\lambda} B_{j}^{\mu} = 0.$$

Consequently $\sigma_{\lambda,u}$ must take the form

(1.2)
$$\sigma_{\lambda;\mu} = \rho g_{\lambda\mu} + v_{\lambda} \sigma_{\mu} + v_{\mu} \sigma_{\lambda},$$

where $\rho = -H\sigma_{\nu} B^{\nu}$ and v_{λ} is a certain vector.

Conversely, if (1.2) holds, we know easily that the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are totally umbilical.

Differentiating (1.2) and substituting the resulted equations in Ricci identities $\sigma_{\lambda;\mu\nu} - \sigma_{\lambda;\nu\mu} = -\sigma_{\omega} R^{\omega}_{\lambda\mu\nu}$, we have

(1.3)
$$-\sigma_{\omega} R^{\omega}_{\lambda\mu\nu} = \{ (\rho_{\nu} - \rho v_{\nu}) g_{\lambda\mu} - (\rho_{\mu} - \rho v_{\mu}) g_{\lambda\nu} \}$$

$$+ \{ (v_{\lambda;\nu} - v_{\lambda} v_{\nu}) \sigma_{\mu} - (v_{\lambda;\mu} - v_{\lambda} v_{\mu}) \sigma_{\nu} \} + \sigma_{\lambda} (v_{\mu;\nu} - v_{\nu;\mu}) .$$

If we put $\sigma_{\lambda} = \sqrt{\sigma^{\mu}\sigma_{\mu}} B_{\lambda}$, where $\sigma^{\mu}\sigma_{\mu} = g^{\mu\nu}\sigma_{\mu}\sigma_{\nu}$ and $B_{\lambda} = g_{\lambda\nu}B^{\nu}$, we have from (1.3)