138. On the Simple Extension of a Space with Respect to a Uniformity. IV.

By Kiiti MORITA.

Tokyo University of Education. (Comm. by K. KUNUGI, M.J.A., Dec. 12, 1951.)

The purpose of the present note is to show that any regular T_1 -space containing a regular T_1 -space R as a dense subset can be obtained by constructing the simple extension of R with respect to some regular uniformity ¹⁾, and to discuss some other extensions related to the simple extensions.

§1. Regular uniformity.

Theorem 1. Let $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ be a regular uniformity of a space R agreeing with the topology. Then the simple extension R^* of R with respect to $\{\mathfrak{U}_{\alpha}\}$ is characterized as a space S with the following properties :

- (1) S contains R as a subspace.
- (2) $\{S-\overline{R-G}; G \text{ open in } R\}$ is a basis of open sets for S.
- (3) Each point of S-R is closed.
- (4) $\mathfrak{B}_a = \{S \overline{R U}; U \in \mathfrak{U}_a\}$ is an open covering of S.
- (5) $\{S(x, \mathfrak{V}_a); \alpha \in \mathcal{Q}\}$ is a basis of neighbourhoods at each point x of S-R.

(6) S is complete with respect to the uniformity $\{\mathfrak{B}_{\alpha}; \alpha \in \Omega\}$.

Here the bar indicates the closure operation in S.

Proof. It is proved by I, Theorem 9 that R^* has the properties (1)-(6). Conversely, let S be a space with the properties (1)-(6). For any point x of S-R, $\{S(x, \mathfrak{V}_a) \cdot R ; \alpha \in \Omega\}$ is a Cauchy family with respect to $\{\mathfrak{U}_a\}$ because of the regularity of $\{\mathfrak{U}_a\}$, and hence for any $\alpha \in \Omega$ there exists $\beta, \gamma \in \Omega$ and $U_\alpha \in \mathfrak{U}_\alpha$ such that $S(S(x, \mathfrak{V}_\beta) \cdot R, \mathfrak{U}_\gamma) \subset U_\alpha$. Hence we have $\overline{S(x, \mathfrak{V}_\beta) \cdot R} \subset S(S(x, \mathfrak{V}_\beta) \cdot R, \mathfrak{V}_\gamma) \subset S - \overline{R - U_\alpha} \subset S(x, \mathfrak{V}_\alpha)$.

Since $\{\mathfrak{B}_a\}$ agrees with the topology of $S, \{S(x, \mathfrak{B}_a) \cdot R; \alpha \in \mathcal{Q}\}$ is a vanishing Cauchy family of R with respect to $\{\mathfrak{U}_a\}$ such that $x = \prod \overline{S(x, \mathfrak{B}_a) \cdot R}$. Therefore Theorem 1 follows immediately from II, Theorem 1.

Theorem 2. Let R be a regular T-space, and let S be any regular T-space such that S contains R as a dense subspace and each point of S-R is closed. Then there exists a homeomorphism φ of S

¹⁾ K. Morita: On the simple extension of a space with respect to a uniformity. I, II, III, Proc., 27 (1951), 65-72; 130-137; 166-171. These notes shall be cited with I, II, III respectively. We make use of the same terminologies and notations as in these notes.