No. 10.]

134. Über die imaginär-quadratischen Zahlkörper der Klassenzahl Eins oder Zwei.

Von Kanesiroo Iseki.

(Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1951.)

Es wurde von Herren Heilbronn und Linfoot 1934 bewiesen¹⁾, dass es höchstens eine Fundamentaldiskriminante $<-10^4$ mit der Klassenzahl Eins gibt. Ich habe mich darum bemüht, das entsprechende Problem für den Fall der Klassenzahl ≤ 2 zu lösen, und das folgende Resultat gewonnen:

Es gibt höchstens eine einzige Fundamentaldiskriminante $<-9\times10^4$ mit der Klassenzahl ≤ 2 .

Meine Methode gestattet, für jede vorgegebene natürliche Zahl n eine positive Zahl N(n) effektiv so auszuberechnen, dass es höchstens eine Fundamentaldiskriminante $\langle -N(n) \rangle$ mit der Klassenzahl $\leq n$ gibt; jedoch liegt mein Hauptinteresse im nächsteinfachsten Fall n=2.

Es soll hier nicht unerwähnt bleiben, dass Herr Tatuzawa³⁾ ein wenig später als die gegenwärtige Untersuchung einige engst mit dem hierigen verbundene Resultate nach seiner eigenen Methode erhielt und vor allem bewies, dass man $N(n) = 2100 \, n^2 \, \log^2 (13 \, n)$ nehmen darf.

Im folgenden werde ich den Abriss³ meiner Beweismethode angeben. Es seien -J und $-J_0$ zwei Fundamentaldiskriminanten mit der Nebenbedingung $J > J_0 > 9 \times 10^4$. Wir bezeichnen mit h = h(-J) und $h_0 = h(-J_0)$ die entsprechenden Klassenzahlen. Nun nehmen wir $h \leq 2$ und $h_0 \leq 2$ an, und daraus soll ein Widerspruch abgeleitet werden. Das wird sich aus den folgenden zwei Lemmata ergeben:

Lemma 1: Es sei $\chi_0(n)=\left(\frac{-\varDelta_0}{n}\right)$ das Kroneckersche Symbol. Dann ist für die entsprechende Dirichletsche L-Funktion

$$L\left(1-rac{5}{\sqrt{A_0}}, \chi_0
ight) < 0 < L\left(1-rac{h_0}{\sqrt{A_0}}, \chi_0
ight).$$

¹⁾ H. Heilbronn und E. H. Linfoot: On the imaginary quadratic corpora of class-number one; Quart. Journ. Math. (Oxford Series), Bd. V (1934), 293-301.

²⁾ On a theorem of Siegel", was im "Japanese Journal of Mathematics" zu erscheinen ist.

³⁾ Der ausführliche Beweis wird demnächst im "Japanese Journal of Mathematics" (Jahrgang 1952) erscheinen.