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The main purpose of the present note is to prove the following
theorem® by a new method.

Theorem 1. An algebra A over an algebraically closed field is
symmetric if and only if its basic algebra is symmetric.

As an application, we can show that absolutely uni-serial
algebras are symmetric.

In what follows we assume always that A is an algebra with
unit element over an algebraically closed field K. Let S(a) and R(a)
be the left and the right regular representations of A, formed by
means of a basis (u,). A is called a Frobenius algebra if S(a) and
R(a) are similar:

(1) S(¢) = P'R(a)P.

In particular, A is called a symmetric algebra when the matrix P
can be chosen as a symmetric matrix?.

Let A =A*+N be a splitting of an algebra A into a direct
sum of a semisimple subalgebra A* and the radical N of A. We
shall denote by

A¥=AF+ AF+----.. + A%

the unique splitting of A* into a direct sum of simple invariant
subalgebras. Let e, . (2, =1, 2,...., f(x)) be a set of matrix
units for the simple algebra A¥. We set e = > e, ;. Then ede is
an algebra with unit element e, which is called the basic algebra®
of A. As one can easily see, the radical of ede is ede /\ N = eNe
and eAe/eNe is direct sum of fields.

Let now

(2) A=A1>Az> """ >At> (0)

be a composition series for A considered as an (4, A) space. Then
corresponding to (2), we obtain a composition series for eAe consi-
dered as an (ede, ede) space

(3) eAe=eA e >eA,e> oo Sedie> (0)

1) See Nesbitt and Scott [5] p. 549.
2) Nesbitt and Nakayama [4].
3) Nesbitt and Scott [5].



