29. Probability-theoretic Investigations on Inheritance. VII₅. Non-Paternity Problems.

By Yûsaku Komatu.

Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University. (Comm. by T. FURUHATA, M.J.A., Feb. 12, 1952.)

6. Discontinuity on probablity based upon recessive genes.

As remarked in § 1, the probability of proving non-paternity is, in general, less in case upon phenotypes alone than in case upon the corresponding genotypes, provided that there exist recessive genes. Besides this trivial fact, we notice here a further remarkable fact which has probably not yet been explicitly noticed. We shall discuss in the present section this apparently curious phenomenon, which may be called the *discontinuity on probability of proving nonpaternity based upon recessive genes*.

Now, if, in the formula (5.3), representing the whole probability of proving non-paternity with the aid of *ABO* blood type, we put r=0 and correspondingly p+q=1, then it becomes

(6.1)
$$\varphi = [P_{AB0}]^{r=0} = qp^4 + pq^4 = pq(p^3 + q^3) = pq(1 - 3pq).$$

On the other hand, if, in the corresponding formula (5.1), representing that with the aid of MN blood type, we merely substitute pand q instead of s and t respectively, then it becomes

(6.2)
$$\psi = [P_{MN}]^{(s,t)=(p,q)} = pq(1-pq).$$

Hence, φ is less than ψ in general, i.e., surely so unless pq vanishes; in fact, the difference is equal to

$$(6.3) \qquad \qquad \varphi - \psi = -2p^2 q^2 \leq 0.$$

In general, the comparison between the modes of inheritance of ABO and MN blood types immediately shows that, if particularly the gene O would be lacking, then the mode of inheritance of the former consisting of both genes A and B alone would reduce essentially to that of the latter. Consequently, it would superficially be expected as plausible that, if, in any general result on ABOblood type, we put particularly r=0 and replace s, t instead of p, q respectively, then a corresponding result on MN blood type would be obtained. Although this is really the case for the most part, all does not go well. A counter-example is offered by non-paternity problem under consideration. If r vanishes, the probability P_{ABO}