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In this note we shall prove some simple theorems on the identifi-
cation of two topological groups with the same underlying abstract
group.

1. Some notations and definitions. In the following we mean
by the word ‘‘topology’ a topology which satisfies Hausdorft’s
axioms.

We denote by R(T) a set R with topology T (in this note R
may be an abstract set or an abstract group or an abstract linear
space). For two sets R, and R, (without topologies) we denote by
R, x R, their direct product, that is, the set of all pairs (x;, z,)
where x,€ R, and x,€ R,. When R, and R, are both abstract groups
or both abstract linear spaces, we can consider R, x R, as an abstract
group or as an abstract linear space in the well-known manner (in
the case of groups, we define (x,, #;) (%, %) by (¥, ®y.) wWhere
o, ¥, € Ry and wx,, y,€ R, and in the case of linear spaces, we define
(@1, 2) + (11, v2) and al(@, z) by (i+uy, x+y) and (az, ax,)
respectively where x,, y, € R, x., ¥.€ K, and « is any real number).
When R,(T,) and R,(T.) are two topological spaces, we denote by
R.(T)) x R,(T,) the so-called topological direct product of R;(T;) and
R,(T,). We denote the topology of the topological space R,(T:) x
R,(T,) by T, x T,. Evidently by the definitions R, x R,(T, x T,) =
R,(T)) x R,(T,). For a subset S of a topological space R(T), we
denote by S{T} S with the topology induced by 7. If R is endowed
with two topologies T' and T*, and T is stronger (that is, with more
open sets) than T* or at least equivalent to 7%, then we write T'>T*.
By 4z, we denote the diagonal of R x R, that is, the set of the ele-
ments of K x R which are of the form (a, @) where ae K. When
R is an abstract group or an abstract linear space, J. is a subgroup
or a linear subspace of R x R respectively.

In the following, we shall say that a topological space is semi-
compact, if it is locally bicompact and can be represented as a sum
of a number, countable at most, of bicompact sets.

2. We prove first a simple lemma.

Lemma 1. If R is endowed with three topologies Ty, T.y T* and
T\ 2=>T*, T.=2T*, then dr is closed in R(T)) x R(T,).

Proof. T, x T,=T* x T*, since T, =T* and T,=T*. On the
other hand, 4. is closed in R x R(T* x T*) (= R(T*) x R(T*)), as



