99. On the Classification of Symmetric Fuchsian Groups of Genus Zero

By Tadashi Kuroda

Mathematical Institute, Nagoya University, Nagoya (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1953)

1. Let $\{\alpha_i\}$ (i=0,1,2,...) be a finite or an enumerable number of circular open arcs in the unit circle |z| < 1 which are orthogonal to the circumference |z|=1 and disjoint each others in |z|<1 and let D_0 be the simply connected domain in |z|<1 bounded by $\{\alpha_i\}$ (i=0,1,2,...) and the closed set E on |z|=1. If \widetilde{D}_0 is the reflection of D_0 with respect to an arc of $\{\alpha_i\}$, say α_0 , then the domain D_0 $\neg \alpha_0 \neg \widetilde{D}_0$ is a fundamental domain of a symmetric Fuchsian or fuchsoid group \mathfrak{G} without any elliptic transformation and of genus zero. Conversely, such a group has a fundamental domain as stated above.

We denote by $\{\tilde{\alpha}_i\}$ (i=0,1,2,...) the boundary arcs of D_0 corresponding to $\{\alpha_i\}$ (i=0,1,2,...) by S. $\tilde{\alpha}_0$ is identical to α_0 . Identifying the equivalent points on α_i and $\tilde{\alpha}_i$ (i=1,2,...), we get an open Riemann surface \hat{D} . This surface \hat{D} can be decomposed by a relative boundary C into two parts D and \tilde{D} , each one of which is the image of the other by an indirectly conformal mapping. And $D \cup C$ (or $\tilde{D} \cup C$) is comformally equivalent to $D_0 \cup \bigcup_{i=0}^{\infty} \alpha_i$ (or $\tilde{D}_0 \cup \bigcup_{i=0}^{\infty} \tilde{\alpha}_i$).

2. We state here some notations. Let *HB* or *HD* be the class of single-valued harmonic functions bounded or Dirichlet bounded in a region. If there exists no non-constant function of *HB* (or *HD*) in D_0 which equals to zero on $\Gamma = \bigcup_{i=0}^{\infty} \alpha_i$, then we may say that D_0 belongs to the class SO_{HB} (or SO_{HD}). If any function of *HB* in D_0 , whose normal derivative vanishes at every point on Γ , reduces to a constant, we say that D_0 belongs to the class NO_{HB} .

Further we denote by O_{a} the class of Riemann surfaces with null boundary and by O_{AB} (or O_{AD}) the class of Riemann surfaces on each of which there exists no non-constant single-valued bounded (or Dirichlet bounded) analytic function.

3. Ullemar (=Uskila⁷⁾⁸⁾) classified the symmetric Fuchsian or fuchsoid groups (5) without any elliptic transformation and of genus zero according to the existence of a certain kind of automorphic functions for (5). More precisely, (5) belongs to positive type or null type with respect to bounded (or Dirichlet bounded) automorphic functions according to whether in |z| < 1 there exists a non-